gp> read("sq3.gp") time = 29 ms. gp> ph1([x,y]) time = 8 ms. %1 = [((-u^4 + 2*u^3 + 4*u^2 + 2*u + 1)*x^2 + (2*u^4 - 8*u^2 - 8*u - 2)*x + (u^4 - 2*u^3 + y*u^2 + 6*u + (-y + 3)))/(x^2 - 2*x + 1), ((-2*u^5 + 8*u^4 + 4*u^3 - 8*u^2 - 2*u)*x^3 + (-2*u^6 + 10*u^5 - 2*u^4 - 20*u^3 + 2*u^2 + 10*u + 2)*x^2 + (4*u^6 - 2*u^5 - 20*u^4 + (2*y + 4)*u^3 + 20*u^2 + (-2*y - 2)*u - 4)*x + (2*u^6 - 6*u^5 + (2*y + 2)*u^4 + (-2*y + 12)*u^3 + (-4*y - 2)*u^2 + (2*y - 6)*u + (2*y - 2)))/(x^3 - 3*x^2 + 3*x - 1)] gp> ph2([x,y]) time = 66 ms. %2 = [((2*u^2 - 2*u - 2)*x + (-4*u^3 + 4*u^2 + 12*u + (y + 4)))/(-2*u*x + (-4*u^4 + 4*u^3 + 12*u^2 + 4*u + y)), ((4*u^2 - 4)*x^3 + (4*u^6 - 8*u^5 + 4*u^4 - 32*u^3 - 28*u^2 + 40*u + 20)*x^2 + (16*u^8 - 64*u^7 + 16*u^6 + 64*u^5 + 80*u^4 + 128*u^3 - 80*u^2 - 128*u - 32)*x + (-16*u^10 + 32*u^9 + 80*u^8 - 64*u^7 + (16*y - 160)*u^6 + (-32*y - 128)*u^5 + (-32*y - 96)*u^4 + (32*y + 64)*u^3 + (-2*y^2 + 16*y + 176)*u^2 + 96*u + (2*y^2 + 16)))/(4*u^2*x^2 + (16*u^5 - 16*u^4 - 48*u^3 - 16*u^2 - 4*y*u)*x + (16*u^8 - 32*u^7 - 80*u^6 + 64*u^5 + (-8*y + 176)*u^4 + (8*y + 96)*u^3 + (24*y + 16)*u^2 + 8*y*u + y^2))]
gp> e2 time = 0 ms. %6 = [0, 2*u^4 - 4*u^3 - 2*u^2 - 8*u - 4, 0, -4*u^6 + 12*u^4 + 16*u^3 + 20*u^2 + 16*u + 4, 0, 8*u^4 - 16*u^3 - 8*u^2 - 32*u - 16, -8*u^6 + 24*u^4 + 32*u^3 + 40*u^2 + 32*u + 8, 0, -16*u^12 + 96*u^10 + 128*u^9 + 16*u^8 - 256*u^7 - 704*u^6 - 1024*u^5 - 1008*u^4 - 768*u^3 - 416*u^2 - 128*u - 16, 64*u^8 - 256*u^7 + 320*u^6 - 256*u^5 + 256*u^4 + 256*u^3 + 320*u^2 + 256*u + 64, -512*u^12 + 3072*u^11 - 6912*u^10 + 8704*u^9 - 7680*u^8 + 7680*u^7 - 2560*u^6 - 7680*u^5 - 7680*u^4 - 8704*u^3 - 6912*u^2 - 3072*u - 512, 1024*u^20 - 4096*u^19 + 12288*u^17 - 4096*u^16 - 4096*u^15 - 20480*u^13 + 6144*u^12 + 20480*u^11 + 4096*u^9 - 4096*u^8 - 12288*u^7 + 4096*u^5 + 1024*u^4, (256*u^24 - 3072*u^23 + 16128*u^22 - 50176*u^21 + 108288*u^20 - 178176*u^19 + 226304*u^18 - 221184*u^17 + 177408*u^16 - 99328*u^15 + 23808*u^14 - 9216*u^13 - 55808*u^12 + 9216*u^11 + 23808*u^10 + 99328*u^9 + 177408*u^8 + 221184*u^7 + 226304*u^6 + 178176*u^5 + 108288*u^4 + 50176*u^3 + 16128*u^2 + 3072*u + 256)/(u^20 - 4*u^19 + 12*u^17 - 4*u^16 - 4*u^15 - 20*u^13 + 6*u^12 + 20*u^11 + 4*u^9 - 4*u^8 - 12*u^7 + 4*u^5 + u^4), 0, 0, 0, 0, 0, 0] gp> e2.disc time = 0 ms. %7 = 1024*u^20 - 4096*u^19 + 12288*u^17 - 4096*u^16 - 4096*u^15 - 20480*u^13 + 6144*u^12 + 20480*u^11 + 4096*u^9 - 4096*u^8 - 12288*u^7 + 4096*u^5 + 1024*u^4 gp> factor(e2.disc) time = 115 ms. %8 = [u - 1 4] [u 4] [u + 1 4] [u^2 - 2*u - 1 2] [u^2 + 1 2]
gp> P1 time = 0 ms. %9 = [4*u^2 + 4, 4*u^4 - 8*u^3 + 8*u^2 - 8*u + 4] gp> ellisoncurve(e2,P1) time = 0 ms. %10 = 1 gp> factor(P1[1]) time = 2 ms. %11 = [u^2 + 1 1] gp> factor(P1[2]) time = 4 ms. %12 = [u - 1 2] [u^2 + 1 1]
P ∈ E(Q(u)) | ψ(P) ∈ C(Q(u)) | v ∈ Q(u) | w ∈ Q(u) | |
O | [0:1:0] | [1,2(u2-1)] | 1 | - |
T1 | [0,0] | [1/u,(-u4+1)/u2] | 1/u | 1/u, u |
T2 | [2(u+1)2,0] | [-1,2(u2-1)] | -1 | - |
T3=T1+T2 | [-(u2+1)(u2-2u-1),0] | [-u,-(u4-1)] | -u | -u, 1/u |
P1 | [4(u2+1), 4(u-1)2(u2+1)] | [-u,(u4-1)] | -u | 1/u, -u |
-P1 | [4(u2+1), -4(u-1)2(u2+1)] | [-(u3-u+2)/(2u3+u2-1), (u-1)(u+1)(u2+1)(u4+4u3+18u2-4u+1)/(2u3+u2-1)2] |
{-(u3-u+2)}/{2u3+u2-1} | {-(3u2-2u+1)}/{u(u2+2u+3)}, {u(u2+2u+3)}/{3u2-2u+1} |
P1+T1 | [-(u+1)2(u2-2u-1), (u-1)2(u+1)2(u2-2u-1)] | [-1,-2(u2-1)] | -1 | - |
-P1+T1 | [-(u+1)2(u2-2u-1), -(u-1)2(u+1)2(u2-2u-1)] | [(3u2+2u-3)/(u2-2u-1), -2(u-1)(u-1)(u4+4u3+18u2-4u+1)/(u2-2u-1)2] |
{3u2+2u-3}/{u2-2u-1} | {-(u2-2u-1)}/{4u}, {4u}/{(u2+2u-1)} |
P1+T2 | [2(u+1)2(u2+1), -4u2(u+1)2(u2+1)] |
[1/u,(u4-1)/u2] | 1/u | -u, 1/u |
-P1+T2 | [2(u+1)2(u2+1), 4u2(u+1)2(u2+1)] |
[(2u3+u2-1)/(u3-u+2), (u-1)(u+1)(u2+1)(u4+4u3+18u2-4u+1)/(u3-u+2)2] |
{2u3+u2-1}/{u3-u+2} | {u(u2+2u+3)}/{3u2-2u+1}, {-3(3u2-2u+1)}/{u(u2+2u+3)} |
P1+T3 | [2(u2-2u-1), -4u2(u2-2u-1)] |
[1,-2(u2-1)] | 1 | - |
-P1+T3 | [2(u2-2u-1), 4u2(u2-2u-1)] |
- | - | - |
2P1 | [(u2+2u+3)2/4, -(u2+2u-1)(u2+2u+3)(3u2-2u+1)/8] |
[-(u2-2u-1)/(3u2+2u-3), 2(u-1)(u+1)(u4+4u3+18u2-4u+1)/{3(3u2+2u-3)2}] |
{-(u2-2u-1)}/{3u2+2u-3} | {-(u2+2u-1)}/{27u}, {27u}/{u2+2u-1} |
-2P1 | [(u2+2u+3)2/4, (u2+2u-1)(u2+2u+3)(3u2-2u+1)/8] |
[{7u6+22u5+31u4-36u3-31u2+22u-7}/{(u2-2u-1)(3u4+12u3-10u2-12u+3)}, {2(u-1)(u+1)(u12+12u11+486u10+996u9+207u8-296u7+468u6+296u5+207u4-996u3+486u2-12u+1)}/{(u2-2u-1)2(3u4+12u3-10u2-12u+3)2} |
{7u6+22u5+31u4-36u3-31u2+22u-7}/{(u2-2u-1)(3u4+12u3-10u2-12u+3)} | {(u2+2u-1)(u4+4u3+18u2-4u+1)}/{4u(5u4+4u3-6u2-4u+5)}, {-4u(5u4+4u3-6u2-4u+5)}/{(u2+2u-1)(u4+4u3+18u2-4u+1)} |
2P1+T1 | [-16(u+1)2(u2+1)(u2-2u-1)/(u2+2u+3)2, -8(u+1)2(u2+1)(u2+2u-1)(3u2-2u+1)/(u2+2u+3)3] |
[(2u3+u2-1)/(u3-u+2), -(u-1)(u+1)(u2+1)(u4+4u3+18u2-4u+1)/(u3-u+2)2] |
{-(u2-2u-1)}/{3u2+2u-3} | {-(3u2+2u-1)}/{u(u2+2u+3)}, {u(u2+2u+3)}/{3u2-2u+1} |
-2P1+T1 | [-16(u+1)2(u2+1)(u2-2u-1)/(u2+2u+3)2, 8(u+1)2(u2+1)(u2+2u-1)(3u2-2u+1)/(u2+2u+3)3] |
[{2u7+3u6+20u5-13u4-14u3+5u2-16u+5}/{5u7+16u6+5u5+14u4-13u3-20u2+3u-2}, {(u-1)(u+1)(u2+1)(u12+12u11+486u10+996u9+207u8-296u7+468u6+296u5+207u4-996u3+486u2-12u+1)}/{(5u7+16u6+5u5+14u4-13u3-20u2+3u-2)2} |
{2u7+3u6+20u5-13u4-14u3+5u2-16u+5}/{5u7+16u6+5u5+14u4-13u3-20u2+3u-2} | {(3u2-2u+1)(7u4+12u3+6u2+4u-1)}/{u(u2+2u+3)(u4+4u3-6u2+12u-7)}, {-u(u2+2u+3)(u4+4u3-6u2+12u-7)}/{(3u2-2u+1)(7u4+12u3+6u2+4u-1)} |
2P1+T2 | [2(u+1)2(3u2-2u+1)2/(u2+2u-1)2, -8u2(u-1)2(u+1)2(u2+2u+3)(3u2-2u+1)/(u2+2u-1)3] |
[(3u2+2u-3)/(u2-2u-1), 2(u-1)(u+1)(u4+4u3+18u2-4u+1)/(u2-2u-1)2] |
{3u2+2u-3}/{u2-2u-1} | {4u}/{u2+2u-1}, {-(u2+2u-1)}/{4u} |
-2P1+T2 | [2(u+1)2(3u2-2u+1)2/(u2+2u-1)2, 8u2(u-1)2(u+1)2(u2+2u+3)(3u2-2u+1)/(u2+2u-1)3] |
[-(u2-2u+1)(3u4+12u3-10u2-12u+3)/(7u6+22u5+31u4-36u3-31u2+22u-7), 2(u-1)(u+1)(u12+12u11+486u10+996u9+207u8-296u7+468u6+296u5+207u4-996u3+486u2-12u+1)/(7u6+22u5+31u4-36u3-31u2+22u-7)2] |
{-(u2-2u+1)(3u4+12u3-10u2-12u+3)}/{7u6+22u5+31u4-36u3-31u2+22u-7} | {-4u(5u4+4u3-6u2-4u+5)}/{(u2+2u-1)(u4+4u3+18u2-4u+1)}, {(u2+2u-1)(u4+4u3+18u2-4u+1)}/{4u(5u4+4u3-6u2-4u+5)} |
2P1+T3 | [-2(u2-2u-1)(u2+1)(u2+2u-1)2/(3u2-2u+1)2, -8u2(u-1)2(u2+1)(u2+2u-1)(u2+2u+3)/(3u2-2u+1)3] |
[-(u3-u+3)/(2u3+u2-1), (u-1)(u+1)(u2+1)(u4+4u3+18u2-4u+1)/(2u3+u2-1)2] |
{-(u3-u+3)}/{2u3+u2-1} | {u(u2+2u+3)}/{3u2-2u+1}, {-(3u2-2u+1)}/{u(u2+2u+3)} |
-2P1+T3 | [-2(u2-2u-1)(u2+1)(u2+2u-1)2/(3u2-2u+1)2, 8u2(u-1)2(u2+1)(u2+2u-1)(u2+2u+3)/(3u2-2u+1)3] |
[(5u7+16u6+5u5+14u4-13u3-20u2+3u-2)/(2u7+3u6+20u5-13u4-14u3+5u2-16u+5), (u-1)(u+1)(u2+1)(u12+12u11+486u10+996u9+207u8-296u7+468u6+296u5+207u4-996u3+486u2-12u+1)/(2u7+3u6+20u5-13u4-14u3+5u2-16u+5)2] |
{5u7+16u6+5u5+14u4-13u3-20u2+3u-2}/{2u7+3u6+20u5-13u4-14u3+5u2-16u+5} | {-u(u2+2u+3)(u4+4u3-6u2+12u-7)}/{(3u2-2u+1)(7u4+12u3+6u2+4u-1)}, {(3u2-2u+1)(7u4+12u3+6u2+4u-1)}/{u(u2+2u+3)(u4+4u3-6u2+12u-7)} |
3P1 | [4(u2+1)(5u4+4u3-6u2-4u+5)2/(u4+4u3-6u2+12u-7)2, 4(u-1)2(u2+1)(u4+4u3+18u2-4u+1)(5u4+4u3-6u2-4u+5)(7u4+12u3+6u2+4u-1)/(u4+4u3-6u2+12u-7)3] |
[(5u7+16u6+5u5+14u4-13u3-20u2+3u-2)/(2u7+3u6+20u5-13u4-14u3+5u2-16u+5), (u-1)(u+1)(u2+1)(u12+12u11+486u10+996u9+207u8-296u7+468u6+296u5+207u4-996u3+486u2-12u+1)/(2u7+3u6+20u5-13u4-14u3+5u2-16u+5)2] |
{5u7+16u6+5u5+14u4-13u3-20u2+3u-2}/{2u7+3u6+20u5-13u4-14u3+5u2-16u+5} | {(3u2-2u+1)(7u4+12u3+6u2+4u-1)}/{u(u2+2u+3)(u4+4u3-6u2+12u-7)}, {-u(u2+2u+3)(u4+4u3-6u2+12u-7)}/{(3u2-2u+1)(7u4+12u3+6u2+4u-1)} |
-3P1 | [4(u2+1)(5u4+4u3-6u2-4u+5)2/(u4+4u3-6u2+12u-7)2, -4(u-1)2(u2+1)(u4+4u3+18u2-4u+1)(5u4+4u3-6u2-4u+5)(7u4+12u3+6u2+4u-1)/(u4+4u3-6u2+12u-7)3] |
[-(5u13+32u12-282u11-596u10+3u9+292u8-268u7+792u6-69u5-56u4+582u3-452u2+93u-12)/(12u13+93u12+452u11+582u10+56u9-69u8-792u7-268u6-292u5+3u4+596u3-282u2-32u+5), (u-1)(u+1)(u2+1)(u24+24u23+14556u22+119128u21+391842u20+580296u19+79724u18-1047288u17-687505u16-91536u15+406456u14+2989808u13+282076u12-2989808u11+406456u10+91536u9-687505u8+1047288u7+79724u6-580296u5+391842u4-119128u3+14556u2-24u+1)/(12u13+93u12+452u11+582u10+56u9-69u8-792u7-268u6-292u5+3u4+596u3-282u2-32u+5)2] |
{-(5u13+32u12-282u11-596u10+3u9+292u8-268u7+792u6-69u5-56u4+582u3-452u2+93u-12)}/{12u13+93u12+452u11+582u10+56u9-69u8-792u7-268u6-292u5+3u4+596u3-282u2-32u+5} | {-(7u4+12u3+6u2+4u-1)(17u8+40u7+4u6-56u5+22u4-104u3+100u2-8u+1)}/{u(u4+4u3-6u2+12u-7)(u8+8u7+100u6+104u5+22u4+56u3+4u2-40u+17)}, {u(u4+4u3-6u2+12u-7)(u8+8u7+100u6+104u5+22u4+56u3+4u2-40u+17)}/{(7u4+12u3+6u2+4u-1)(17u8+40u7+4u6-56u5+22u4-104u3+100u2-8u+1)} |
... | ... | ... |
u | Eu:[a1,a2,a3,a4,a6] |
Eu(Q)tors Eu(Q)torsの生成元 |
rank(Eu(Q)) | Eu(Q)/Eu(Q)torsの生成元 |
Eu(Q)/Eu(Q)tors の生成元の高さ |
Cu: y2=ax4+bx3+cx2+dx+e (a,b,c,d,e) |
Cu(Q) | u |
2 | [0, -28, 0, 180, 0] | Z/2Z×Z/2Z [0, 0], [10, 0] |
1 | [2 : 16 : 1] | 1.1462288522241 | (17, 12, 2, -12, 17) |
[1, -6], ... |
2 |
3 | [0, 8, 0, -1280, 0] | Z/2Z×Z/2Z [0, 0], [32, 0] |
1 | [-32 : 128 : 1] | 1.1462288522241 | (40, -64, 176, 64, 40) |
[-1, -16], ... |
3 |
4 | [0, 188, 0, -11900, 0] | Z/2Z×Z/2Z [0, 0], [50, 0] |
2 | [-175 : 1575 : 1], [338 : -7488 : 1] |
1.74076491514234, 2.87222544209511 |
(113, -420, 674, 420, 113) |
[-1,30], [1/56, 34455/3136], ... |
4 |
5 | [0, 656, 0, -52416, 0] | Z/2Z×Z/2Z [0, 0], [72, 0] |
1 | [-28 : 1400 : 1] | 1.58898526713929 | (296, -1344, 1712, 1344, 296) |
[47/95, -319344/9025], ... |
5 |
6 | [0, 1604, 0, -166796, 0] | Z/2Z×Z/2Z [0, 0], [98, 0] |
2 | [-1127 : 28175 : 1], [-1694 : 4928 : 1] |
2.09652859736981, 4.61886316103567 |
(673, -3220, 3554, 3220, 673) |
[-1, -70], [-839/191, -27749530/36481], ... |
6 |
7 | [0, 3272, 0, -435200, 0] | Z/2Z×Z/2Z [0, 0], [128, 0] |
1 | [200 : -7200 : 1] | 1.88735304910278 | (1352, -6528, 6512, 6528, 1352) |
[-169/367, 2776800/134689], ... |
7 |
8 | [0, 5948, 0, -989820, 0] | Z/2Z×Z/2Z [0, 0], [162, 0] |
2 | [10530 : 1347840 : 1], [1058 : 82432 : 1] |
2.35389724714885, 3.50417269289867 |
(2465, -11844, 10946, 11844, 2465) |
[1087/506, 29750175/256036], [110/29, 7605/29], ... |
8 |
9 | [0, 9968, 0, -2033600, 0] | Z/2Z×Z/2Z [0, 0], [200, 0] |
2 | [-124 : 20088 : 1], [21043064 : -5618336256 : 343] |
2.11385872299762, 9.29897481113499 |
(4168, -19840, 17264, 19840, 4168) |
[319/639, -52036000/408321], [56393/128703, 2005620010400/16564462209], ... |
9 |
10 | [0, 15716, 0, -3861836, 0] | Z/2Z×Z/2Z [0, 0], [242, 0] |
1 | [-9559 : 774279 : 1] | 2.55627951586215 | (6641, -31284, 25922, 31284, 6641) |
[-1, -198], ... |
10 |
11 | [0, 23624, 0, -6886656, 0] | Z/2Z×Z/2Z [0, 0], [288, 0] |
1 | [-14112 : 1411200 : 1] | 2.29684079614009 | (10088, -47040, 37424, 47040, 10088) |
[-1, -240], ... |
11 |
12 | [0, 34172, 0, -11664380, 0] | Z/2Z×Z/2Z [0, 0], [338, 0] |
2 | [-1183 : 244881 : 1], [57154 : 11385495 : 8] |
4.00722977176705, 5.96548872344736 |
(14737, -68068, 52322, 68068, 14737) |
[-29/81, -137566/6561], [81/29, 137566/841], ... |
12 |
13 | [0, 47888, 0, -18925760, 0] | Z/2Z×Z/2Z [0, 0], [392, 0] |
1 | [680 : 97920 : 1] | 2.45050692698816 | (20840, -95424, 71216, 95424, 20840) |
[-13, 28560], ... |
13 |
14 | [0, 65348, 0, -29609100, 0] | Z/2Z×Z/2Z [0, 0], [450, 0] |
2 | [-37575 : 6350175 : 1], [-859321222020 : 240272491990356 : 430368875] |
2.8656153445757, 13.9669383677014 |
(28673, -130260, 94754, 130260, 28673) |
[-1, -390], [-1809592/4913683, -11030391941205/455552464613], ... |
14 |
15 | [0, 87176, 0, -44896256, 0] | Z/2Z×Z/2Z [0, 0], [512, 0] |
2 | [2312 : -612000 : 1], [-62856 : 9945216 : 1] |
4.51685317534012, 6.7743966730988 |
(38536, -173824, 123632, 173824, 38536) |
[-95/241, 1647296/58081], [-10529/7503, -46006299584/56295009], ... |
15 |
16 | [0, 114044, 0, -66251516, 0] | Z/2Z×Z/2Z [0, 0], [578, 0] |
1 | [-64447 : 14500575 : 1] | 2.98964082567156 | (50753, -227460, 158594, 227460, 50753) |
[-1, -510], ... |
16 |
17 | [0, 146672, 0, -95463360, 0] | Z/2Z×Z/2Z [0, 0], [648, 0] |
2 | [1160 : 296960 : 1], [705672 : 651442176 : 1] |
2.69959392001499, 5.03326438313988 |
(65672, -292608, 200432, 292608, 65672) |
[-17, 83520], [1703/1033, 551221056/1067089], ... |
17 |
18 | [0, 185828, 0, -134689100, 0] | Z/2Z×Z/2Z [0, 0], [722, 0] |
1 | [234650 : 152053200 : 1] | 3.09958168655876 | (83665, -370804, 249986, 370804, 83665) |
[11987/5816, 14073473375/33825856], ... |
18 |
19 | [0, 232328, 0, -186502400, 0] | Z/2Z×Z/2Z [0, 0], [800, 0] |
1 | [-644 : 464968 : 1] | 2.8036370798768 | (105128, -463680, 308144, 463680, 105128) |
[3239/6479, -25290248400/41977441], ... |
19 |
20 | [0, 287036, 0, -253943676, 0] | Z/2Z×Z/2Z [0, 0], [882, 0] |
1..2 | [-158319 : 57153159 : 1], ??? |
3.19833249499868, ??? |
(130481, -572964, 375842, 572964, 130481) |
[-1, -798], ... |
20 |
gp> X=2*m*n*(m^2+2*m*n+3*n^2)*(3*m^2-2*m*n+n^2); time = 0 ms. gp> Y=(m^2-n^2)*(m^2+2*m*n+3*n^2)*(3*m^2-2*m*n+n^2); time = 2 ms. gp> S=4*(m^6+2*m^5*n+m^4*n^2+4*m^3*n^3-m^2*n^4+2*m*n^5-n^6); time = 1 ms. gp> A=(m^2+n^2)*(m^2+2*m*n+3*n^2)*(3*m^2-2*m*n+n^2); time = 0 ms. gp> B=(m^2+n^2)*(5*m^4+4*m^3*n-6*m^2*n^2-4*m*n^3+5*n^4); time = 0 ms. gp> C=(m^2+n^2)*(m^4+4*m^3*n+18*m^2*n^2-4*m*n^3+n^4); time = 1 ms. gp> X^2+Y^2-A^2 time = 6 ms. %10 = 0 gp> (S-X)^2+Y^2-B^2 time = 1 ms. %11 = 0 gp> X^2+(S-Y)^2-C^2 time = 0 ms. %12 = 0
Last Update: 2007.02.22 |
H.Nakao |