gp> e2=ellinit([0,-3/2,0,-1,0]) time = 71 ms. %1 = [0, -3/2, 0, -1, 0, -6, -2, 0, -1, 84, 648, 100, 148176/25, [2.000000000000000000000000000, 0.E-28, -0.5000000000000000000000000000]~, 2.099276252069730420320000795, 2.855163991767460424285426172*I, -0.7799139606597224776720052596, -2.557250340658766437949249518*I, 5.993777963682044960280715541] gp> elltors(e2,1) time = 64 ms. %2 = [4, [2, 2], [[0, 0], [-1/2, 0]]]
gp> ellglobalred(e2) time = 5 ms. %3 = [320, [1/2, 1/2, 0, 0], 8] gp> ellchangecurve(e2,[1/2, 1/2, 0, 0]) time = 2 ms. %4 = [0, 0, 0, -28, -48, 0, -56, -192, -784, 1344, 41472, 409600, 148176/25, [6.000000000000000000000000000, -2.000000000000000000000000000, -4.000000000000000000000000000]~, 1.049638126034865210160000397, 1.427581995883730212142713086*I, -1.559827921319444955344010519, -5.114500681317532875898499036*I, 1.498444490920511240070178885] gp> c2=ellinit([0, 0, 0, -28, -48]) time = 125 ms. %5 = [0, 0, 0, -28, -48, 0, -56, -192, -784, 1344, 41472, 409600, 148176/25, [6.000000000000000000000000000, -2.000000000000000000000000000, -4.000000000000000000000000000]~, 1.049638126034865210160000397, 1.427581995883730212142713086*I, -1.559827921319444955344010519, -5.114500681317532875898499036*I, 1.498444490920511240070178885] gp> elltors(c2,1) time = 15 ms. %6 = [4, [2, 2], [[-2, 0], [-4, 0]]] gp> factor(x^3-28*x-48) time = 44 ms. %7 = [x - 6 1] [x + 2 1] [x + 4 1] gp> ellchangepoint([x,y],[1/2, 1/2, 0, 0]) time = 3 ms. %8 = [4*x - 2, 8*y] gp> ellchangepoint([x,y],[2,-2,0,0]) time = 1 ms. %9 = [1/4*x + 1/2, 1/8*y]
bash-2.05a$ mwrank3 Program mwrank: uses 2-descent (via 2-isogeny if possible) to determine the rank of an elliptic curve E over Q, and list a set of points which generate E(Q) modulo 2E(Q). and finally search for further points on the curve. For more details see the file mwrank.doc. For details of algorithms see the author's book. Please acknowledge use of this program in published work, and send problems to John.Cremona@nottingham.ac.uk. Version compiled on Feb 11 2003 at 17:40:15 by GCC 3.2.1 using base arithmetic option LiDIA_ALL (LiDIA bigints and multiprecision floating point) Using LiDIA multiprecision floating point with 15 decimal places. Enter curve: [0, 0, 0, -28, -48] Curve [0,0,0,-28,-48] : 3 points of order 2: [-2 : 0 : 1], [-4 : 0 : 1], [6 : 0 : 1] **************************** * Using 2-isogeny number 1 * **************************** Using 2-isogenous curve [0,12,0,100,0] ------------------------------------------------------- First step, determining 1st descent Selmer groups ------------------------------------------------------- After first local descent, rank bound = 1 rk(S^{phi}(E'))= 2 rk(S^{phi'}(E))= 1 ------------------------------------------------------- Second step, determining 2nd descent Selmer groups ------------------------------------------------------- After second local descent, rank bound = 1 rk(phi'(S^{2}(E)))= 2 rk(phi(S^{2}(E')))= 1 rk(S^{2}(E))= 3 rk(S^{2}(E'))= 2 **************************** * Using 2-isogeny number 2 * **************************** Using 2-isogenous curve [0,24,0,64,0] ------------------------------------------------------- First step, determining 1st descent Selmer groups ------------------------------------------------------- After first local descent, rank bound = 1 rk(S^{phi}(E'))= 2 rk(S^{phi'}(E))= 1 ------------------------------------------------------- Second step, determining 2nd descent Selmer groups ------------------------------------------------------- After second local descent, rank bound = 1 rk(phi'(S^{2}(E)))= 2 rk(phi(S^{2}(E')))= 1 rk(S^{2}(E))= 3 rk(S^{2}(E'))= 2 **************************** * Using 2-isogeny number 3 * **************************** Using 2-isogenous curve [0,-36,0,4,0] ------------------------------------------------------- First step, determining 1st descent Selmer groups ------------------------------------------------------- After first local descent, rank bound = 1 rk(S^{phi}(E'))= 3 rk(S^{phi'}(E))= 0 ------------------------------------------------------- Second step, determining 2nd descent Selmer groups ------------------------------------------------------- After second local descent, rank bound = 1 rk(phi'(S^{2}(E)))= 3 rk(phi(S^{2}(E')))= 0 rk(S^{2}(E))= 3 rk(S^{2}(E'))= 2 After second local descent, combined upper bound on rank = 1 Third step, determining E(Q)/phi(E'(Q)) and E'(Q)/phi'(E(Q)) ------------------------------------------------------- 1. E(Q)/phi(E'(Q)) ------------------------------------------------------- (c,d) =(18,80) (c',d')=(-36,4) First stage (no second descent yet)... (-1,0,18,0,-80): (x:y:z) = (3:1:1) Curve E Point [-9 : -3 : 1], height = 1.44441067612885 (2,0,18,0,40): (x:y:z) = (2:12:1) Curve E Point [8 : 48 : 1], height = 1.44441067612885 After first global descent, this component of the rank = 3 ------------------------------------------------------- 2. E'(Q)/phi'(E(Q)) ------------------------------------------------------- This component of the rank is 0 ------------------------------------------------------- Summary of results: ------------------------------------------------------- rank(E) = 1 #E(Q)/2E(Q) = 8 Information on III(E/Q): #III(E/Q)[phi'] = 1 #III(E/Q)[2] = 1 Information on III(E'/Q): #phi'(III(E/Q)[2]) = 1 #III(E'/Q)[phi] = 1 #III(E'/Q)[2] = 1 ------------------------------------------------------- List of points on E = [0,0,0,-28,-48]: I. Points on E mod phi(E') Point [-3 : -3 : 1], height = 1.44441067612885 Point [14 : 48 : 1], height = 1.44441067612885 II. Points on phi(E') mod 2E --none (modulo torsion). ------------------------------------------------------- Computing full set of 2 coset representatives for 2E(Q) in E(Q) (modulo torsion), and sorting into height order....done. Rank = 1 After descent, rank of points found is 1 Generator 1 is [-3 : -3 : 1]; height 1.44441067612885 The rank has been determined unconditionally. The basis given is for a subgroup of full rank of the Mordell-Weil group (modulo torsion), possibly of index greater than 1. Regulator (of this subgroup) = 1.44441067612885 (12.6 seconds) Enter curve: [0,0,0,0,0] bash-2.05a$
gp> read("heron1.gp") time = 12 ms. gp> rp(5) [0] [2, 0] [-1/2, 0] [0, 0] [-1/4, -3/8] [-2/9, 10/27] [9/2, 15/2] [4, -6] [-1/4, 3/8] [-2/9, -10/27] [9/2, -15/2] [4, 6] [289/144, 323/1728] [722, -19380] [-1/722, -255/6859] [-144/289, 228/4913] [289/144, -323/1728] [722, 19380] [-1/722, 255/6859] [-144/289, -228/4913] [-82369/422500, 99220779/274625000] [-257762/927369, -334857250/893056347] [927369/257762, -449119125/92536558] [422500/82369, 224716050/23639903] [-82369/422500, -99220779/274625000] [-257762/927369, 334857250/893056347] [927369/257762, 449119125/92536558] [422500/82369, -224716050/23639903] [10869522049/60093504, -1128497710174703/465844843008] [21799137602/10749335041, 421884578809320/1114480307715839] [-10749335041/21799137602, 104741743964070/1137925882393201] [-60093504/10869522049, -83909130794808/1133223760262593] [10869522049/60093504, 1128497710174703/465844843008] [21799137602/10749335041, -421884578809320/1114480307715839] [-10749335041/21799137602, -104741743964070/1137925882393201] [-60093504/10869522049, 83909130794808/1133223760262593] [-1371617816258881/4486563942585124, -111211849147488516181563/300518209447599225275432] [-1743328310067362/10344745701429129, 366199787163661363394290/1052155012950376557243867] [10344745701429129/1743328310067362, 630773454115734524963565/51469953549968082926158] [4486563942585124/1371617816258881, -201136752556942432985826/50798358235943694773279] [-1371617816258881/4486563942585124, 111211849147488516181563/300518209447599225275432] [-1743328310067362/10344745701429129, -366199787163661363394290/1052155012950376557243867] [10344745701429129/1743328310067362, -630773454115734524963565/51469953549968082926158] [4486563942585124/1371617816258881, 201136752556942432985826/50798358235943694773279] time = 173 ms.
gp> read("heron1.gp")) time = 2 ms. gp> heron(1,2,[-1/4,-3/8],10) [5/3, 3/2, 17/6] [19/204, 510/19, 104257/3876] [466375/345717, 345717/186550, 185290902161/64493506350] [10824191279/808200264, 2020500660/10824191279, 118150120802920156417/8748114249274297656] [6201739190256655/3002855977377957, 3002855977377957/2480695676102662, 22010591444783753284054797467537/7449171839040530947963507821534] [6715696154503475377421/23900119950235364444700, 59750299875588411111750/6715696154503475377421, 1455546933420454187435887518057277555633746241/160505943641967430308412057535376816583118700] [4999141320667386961827412594445/4620430773855966029326335191283, 4620430773855966029326335191283/1999656528266954784730965037778, 28491705074659096237402480466981628381761640578672064603037457/9239274560346620304887691221197589105281761206858468951289174] [13724529360389961405855982079307725839681/2067181510699010884706448645386672917104, 5167953776747527211766121613466682292760/13724529360389961405855982079307725839681, 194959981735611631553357004149814984962557192081867226822317112550321067422790657/28371093336843850018184908559486665976313574338406593004192795509558730106803824] [893893101097847780844629179876698124591412780064125/343784692005640966038359352750750796999234532845203, 343784692005640966038359352750750796999234532845203/357557240439139112337851671950679249836565112025650, 401813379790005752113774648906741215560920376625637850950895767528682406402047903340411733600265505041/122922705778756352730308410099807261910037338167060444024693282408839223118167080119492292125215456950] [155377879900137887250451080455140167111653216100937354328837299/327921355902219137089598651544961459612462465147534309909083516, 819803389755547842723996628862403649031156162868835774772708790/155377879900137887250451080455140167111653216100937354328837299, 283973964328114351312323569617882988962672935728575729291658114093708880055411911238706879322349240734038845176470899240969537/50951725054065377400318841999136182616633440339931058029074554103299524638392117089004556555246090818423145650388622966863284] time = 23 ms.
gp> findheron1i(1000) [3, 25, 26]; n=36 [9, 10, 17]; n=36 [17, 113, 120]; n=900 [41, 357, 370]; n=7056 [104, 657, 697]; n=32400 [255, 353, 392]; n=44100 [305, 424, 567]; n=63504 [337, 441, 680]; n=63504 [520, 641, 1089]; n=108900 [539, 890, 1233]; n=213444 [585, 746, 847]; n=213444 [696, 865, 1183]; n=298116 time = 5mn, 29,915 ms.
gp> findheron1(1000) [1/2, 25/6, 13/3]; tau=4/3 [3/2, 5/3, 17/6]; tau=2 [17/30, 113/30, 4]; tau=36/25 [41/84, 17/4, 185/42]; tau=21/16 [26/45, 73/20, 697/180]; tau=25/18 [17/14, 353/210, 28/15]; tau=49/60 [305/252, 106/63, 9/4]; tau=98/81 [337/252, 7/4, 170/63]; tau=16/9 [52/33, 641/330, 33/10]; tau=121/45 [7/6, 445/231, 411/154]; tau=18/11 [195/154, 373/231, 11/6]; tau=98/121 [116/91, 865/546, 13/6]; tau=169/147 time = 5mn, 29,271 ms.
τ | Eτ(1) conductor(Eτ(1)) φ:座標変換 Tamagawa数 |
C=φ(Eτ(1)):Global minimal model of E rank(C(Q)) C(Q)/C(Q)torsの生成元 |
Eτ(1)(Q)tors 生成元 |
rank(Eτ(1)(Q)) 生成元 |
面積1の有理三角形 |
4/3 | [0, -7/12, 0, -1, 0] 720 [1/6, 7/36, 0, 0] 32 |
[0, 0, 0, -1443, -9758] 1 [-9 : -50 : 1] |
Z/2Z×Z/2Z [0, 0], [-3/4, 0] |
1 [-1/18, -25/108] |
[1/2, 25/6, 13/3], [77/39, 325/308, 29857/12012], [81909/44390, 554875/491454, 13186994509/5453910765], [401793031/717284568, 1494342850/401793031, 1127771170096757377/288199940666245608], ... |
18/11 | [0, -203/198, 0, -1, 0] 10338240 [1/66, 1489/4356, 0, 0] 512 |
[0, 1, 0, -25623121, -34853751121] 1 [-3073 : -121968 : 1] |
Z/2Z×Z/2Z [0, 0], [18/11, 0] |
1 [-4/11, -14/33] |
[445/231, 7/6, 411/154], [18577/42196, 853510/167193, 37533482737/7054875828], [8323818554575/13019565460209, 394532286673/112231261410, 624952674161724590366523/162355806067702581359410], [1287412299070459663279/529588120203833162472, 1190235926720736147980/1287412299070459663279, 2024246165970310156423655452761717981483457/681798259392019800936638704600870819265688], ... |
16/9 | [0, -175/144, 0, -1, 0] 2022 [1/6, 5/12, 1/12, 1/432] 32 |
[1, 1, 1, -1934, -25909] 1 [147 : 1627 : 1] |
Z/2Z×Z/2Z [0, 0], [-9/16, 0] |
1 [9/2, 63/8] |
[7/4, 337/252, 170/63], [5057/21420, 200515/20228, 271814344/27080235], [695592429/689775988, 58113626989/25041327444, 3208514345180238410/1079556648657288417], [4501179201891854/920099538986355, 34452616070933515/72018867230269664, 341706739127168415232062250357681/66264526536890627248727866434720], ... |
21/16 | [0, -185/336, 0, -1, 0] 4918032 [1/84, 185/1008, 0, 0] 256 |
[0, 0, 0, -54818211, -68817835870] 2 [130417 : 47021184 : 1], [9910810 : -601140771 : 1000] |
Z/2Z×Z/2Z [0, 0], [-21/16, 0] |
2 [56/3, 238/3],[2541/1600, -64911/64000] |
[6409/5292, 2583/1508, 2339825/997542], [7652/3655, 2547535/2571072, 23895688681/9397268160], [1181622551827/1435212687724, 14710930049171/5838605550204, 2986146144119972520483065/1047455095533568332061962], [730001523529/2334073710150, 38734508951775/5840012188232, 45816494392777405415597761/6815509457753942204477400], ... |
25/18 | [0, -301/450, 0, -1, 0] 911040 [1/30, 67/300, 0, 0] 256 |
[0, 1, 0, -930801, -179010801, 4] 2 [1257 : 25272 : 1], [1674 : -54375 : 1] |
Z/2Z×Z/2Z [0, 0], [25/18, 0] |
2 [81/50, 117/125], [25/12, -145/72] |
[91/15, 73/210, 433/70], [583/2622, 414713/43725, 121747729/12738550], [15548/10761, 261851/179400, 505597371/214502600], [539249/181860, 5752838/8088735, 106608855363/32689274380], ... |
36/25 | [0, -671/900, 0, -1, 0] 28815 [1/15, 56/225, 1/30, 0] 256 |
[1, 0, 0, -60005, -3185448, 1] 1 [319 : 3028 : 1] |
Z/2Z×Z/2Z [0, 0], [36/25, 0] |
1 [5/3, 17/18] |
[17/30, 113/30, 4], [26/15, 1921/1560, 255/104], [11407/4830, 18193/20130, 303364/108031], [1073/3536, 1698164/241425, 6100024321/853678800], ... |
49/60 | [0, 1199/2940, 0, -1, 0] 9451575 [1/105, -1499/11025, 1/210, 1/2315250] 512 |
[1, -1, 1, -128289380, 188939210622] 1..2(BSD予想を仮定すれば、1) [19874 : 2332875 : 1], ??? |
Z/2Z×Z/2Z [0, 0], [49/60, 0] |
1..2(BSD予想を仮定すれば、1) [5/3, 85/42], ??? |
[17/14, 353/210, 28/15], [38/105, 6001/1064, 89041/15960], [2020161/829486, 20914897/24954930, 254742311068/105611046255], [8069338049/2842188720, 40609463116/56485366343, 63896065327849661761/22934581580734607280], ... |
98/81 | [0, -3043/7938, 0, -1, 0] 21725760 [1/126, 2029/15876, 0, 0] 4096 |
[0, 1, 0, -264393841, -528106149841] 1 [-6565 : -961632 : 1] |
Z/2Z×Z/2Z [0, 0], [98/81, 0] |
1 [-2/7, -212/441] |
[305/252, 106/63, 9/4], [17/56, 64660/9639, 74599/11016], [30312425/12552876, 5280178/6261255, 53536894713/19802660020], [5449604431/1643565168, 23428775080/38147231017, 31204967135827294177/8956780022170059408], ... |
121/45 | [0, -12616/5445, 0, -1, 0] 219991200 [1/165, 7009/9075, 0, 0] 2048 |
[0, 1, 0, -2067562758, -34178317300512] 2 [-26472 : -1415700 : 1], [-20734947174 : -943475159484 : 912673] |
Z/2Z×Z/2Z [0, 0], [121/45, 0] |
2 [-1/5, -52/165], [-160801/2587475, -9530052116/41412537375] |
[169865/307736, 727376/131175, 1992950441/333613800], [4339237/1513578, 764402756/715974105, 3722429701923/995117221210], [5572764247917554471/447322963747315830, 775359803828680772/3155871173157679053, 1983435156323194036298222763567900003/156854849597956838370266520151812110], [37271042879115961541/14627266936341087600, 492480870224364779680/409981471670275576951, 175711805897610173386296958051917252971/49561226653513076338513787438155635600], ... |
98/121 | [0, 5037/11858, 0, -1, 0] 119479360 [1/154, -1679/11858, 0, 0] 2048 |
[0, 0, 0, -596277148, 1964433304272] 1 [44861 : 8093085 : 1] |
Z/2Z×Z/2Z [0, 0], [98/121, 0] |
1 [7/4, 195/88] |
[195/154, 373/231, 11/6], [23/84, 145470/19481, 247639/33396], [60228675/28707602, 69532049/71347815, 732976604987/345458707470], [62105344031/16540304088, 236729440740/434737408217, 3780666789522912968737/1027241275762595698728], ... |
169/147 | [0, -6952/24843, 0, -1, 0] 657427680 [1/273, 6952/74529, 0, 0] 4096 |
[0, 0, 0, -5699562753, -39287367985448] 2 [166949 : 60517548 : 1], [9445647 : 5452567120 : 27] |
Z/2Z×Z/2Z [0, 0], [169/147, 0] |
2 [7/3, 116/39], [5041/1053, 8559760/862407] |
[34945/145418, 552908/65793, 9751657/1155354], [680600/555009, 10199561/6193460, 6349766953/2905685580], [1037741243734876/1464691214539735, 13922614292053525/4884540681717606, 34040515457735346769470819937/11231308985202049453941186930], [8571614734460341/2050524097727196, 376830747190378840/780016940835891031, 825509465145442209092679709627/193146182081806917140414276196], ... |
- | - | - | - | - | |
3/2 | [0, -5/6, 0, -1, 0] 7488 [1/6, 5/18, 0, 0] 32 |
[0, 0, 0, -1596, -14960] 0 - |
Z/2Z×Z/2Z [0, 0], [3/2, 0] |
0 - |
- |
125/98 | [0, -6021/12250, 0, -1, 0] 282564800 [1/350, 2007/12250, 0, 0] 256 |
[0, 0, 0, -16214664700, -317344026186000] 1 [44885008257005899032497144990654107266547734765964210845054389245 : 22462875410988601280772545291506374870743928685667117001946215234375 : 146349891009622912240833215570513120855007722486779353083609] |
Z/2Z×Z/2Z [0, 0], [125/98, 0] |
1 [207421841446033093544826242213287001220125/77759411823352520455479671962678852774108, 205374860900467211709920414093772570246801633697527926874936825/57369157275772181598406620503641143375163027214817506408774728] |
[201667092684178012989741181112621262875217/150268428308225492765265322402802476909270, 54158888254117442242498268841432909856342469/35291741219731152273204706694708721003162975, 49070346435977027768808145876124840923342314002862691234648453825382309365980211289/21645855042243335358036563416425421780660792565022839751802733293951015951314686850], [1816768644056553631123241277782909886580203534765985239889915772495312633974614988013532204036797738456269271361161348745050205444981301937932169251269205297632355357/14870374481561488778624490837406318488525500450967285859261821147223664703922579605053947948125031371845350015466776012240189751619042094485180838806131129686177895100, 1071899079415185143988335083819782883277171002507010442695189959209445248043607888159731579380704047086532387257746548608022134981705180005047506806399663631007377472794/63586902541979377089313444722401846030307123716809483396147052037335942189111524580473627141287920845969424497640647206076757190574345567827625923794422185417132437495, 65173488817068834020216695320017045858394102805451395155426299092897150386831508791796293674855520048949704473054795036486929606766073851226358904334686406286137502898072764094763315434319079095627084851823881772134333098703363940866351056089944896671908600551503674144406608048710049290070203650193920405836707298941466706169954087/3859432869068520377722503013754297984239353088575655387767608728928341315135640028708222296430677370321143629064281612002609653091551492931004986843121130066035323874491206207563361972378858905483141603261677688416535781786395975663037881238673972925511867035625299415718798194121186795310620831611291278435301635249523645924150100], ... |
gp> a=y/x;b=(5/2)*x/y;c=(x^2+1)/y;s=(a+b+c)/2; time = 3 ms. gp> S=s*(s-a)*(s-b)*(s-c) time = 5 ms. %11 = (-16/y^4*x^12 + 136/y^4*x^10 - 321/y^4*x^8 + ((32*y^4 + 136)/y^4)*x^6 + ((264*y^4 - 16)/y^4)*x^4 + 32*x^2 - 16*y^4)/(256*x^4) gp> f(x,y2)=(-16/y2^2*x^12 + 136/y2^2*x^10 - 321/y2^2*x^8 + ((32*y2^2 136)/y2^2)*x^6+ ((264*y2^2 - 16)/y2^2)*x^4 + 32*x^2 - 16*y2^2)/(256*x^4) time = 0 ms. gp> f(x,x^3-(3/2)*x^2-x) time = 10 ms. %12 = 1
Last Update: 2005.06.12 |
H.Nakao |