bash-2.05a$ gp2c-run -g dquadruple.gp Reading GPRC: ./gp2c_gprc ...Done. GP/PARI CALCULATOR Version 2.1.6 (released) i386 running netbsd 32-bit version (readline v1.0 enabled, extended help available) Copyright (C) 2002 The PARI Group PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER. Type ? for help, \q to quit. Type ?12 for how to get moral (and possibly technical) support. realprecision = 28 significant digits seriesprecision = 16 significant terms format = g0.28 parisize = 128000000, primelimit = 500000 gp> sd4r(10^6) 1:[1, 3, 8, 120] 2:[1, 3, 120, 1680] 3:[1, 3, 1680, 23408] 4:[1, 3, 23408, 326040] 5:[1, 8, 15, 528] 6:[1, 8, 120, 4095] 7:[1, 8, 528, 17955] 8:[1, 8, 4095, 139128] 9:[1, 8, 17955, 609960] 10:[2, 4, 12, 420] 11:[2, 4, 420, 14280] 12:[2, 4, 14280, 485112] 13:[1, 15, 24, 1520] 14:[1, 15, 528, 32760] 15:[1, 15, 1520, 94248] 16:[3, 5, 16, 1008] 17:[3, 5, 1008, 62496] 18:[1, 24, 35, 3480] 19:[1, 24, 1520, 148995] 20:[1, 24, 3480, 341055] 21:[2, 12, 24, 2380] 22:[2, 12, 420, 41184] 23:[2, 12, 2380, 233244] 24:[3, 8, 21, 2080] 25:[3, 8, 120, 11781] 26:[3, 8, 2080, 203841] 27:[4, 6, 20, 1980] 28:[4, 6, 1980, 194040] 29:[1, 35, 48, 6888] 30:[1, 35, 3480, 494208] 31:[1, 35, 6888, 978120] 32:[5, 7, 24, 3432] 33:[5, 7, 3432, 487344] 34:[1, 48, 63, 12320] 35:[2, 24, 40, 7812] 36:[2, 24, 2380, 461760] 37:[3, 16, 33, 6440] 38:[3, 16, 1008, 195585] 39:[4, 12, 30, 5852] 40:[4, 12, 420, 81510] 41:[6, 8, 28, 5460] 42:[1, 63, 80, 20448] 43:[3, 21, 40, 10208] 44:[3, 21, 2080, 528360] 45:[7, 9, 32, 8160] 46:[1, 80, 99, 32040] 47:[2, 40, 60, 19404] 48:[4, 20, 42, 13572] 49:[4, 20, 1980, 637602] 50:[5, 16, 39, 12600] 51:[5, 16, 1008, 324615] 52:[8, 10, 36, 11628] 53:[1, 99, 120, 47960] 54:[3, 33, 56, 22360] 55:[9, 11, 40, 15960] 56:[1, 120, 143, 69168] 57:[1, 120, 1680, 809999] 58:[2, 60, 84, 40612] 59:[3, 40, 65, 31416] 60:[4, 30, 56, 27060] 61:[5, 24, 51, 24640] 62:[6, 20, 48, 23188] 63:[6, 20, 1980, 954408] 64:[8, 15, 45, 21736] 65:[8, 15, 528, 254541] 66:[10, 12, 44, 21252] 67:[1, 143, 168, 96720] 68:[11, 13, 48, 27600] 69:[1, 168, 195, 131768] 70:[2, 84, 112, 75660] 71:[3, 56, 85, 57408] 72:[4, 42, 72, 48620] 73:[6, 28, 60, 40508] 74:[7, 24, 57, 38480] 75:[8, 21, 55, 37128] 76:[12, 14, 52, 35100] 77:[1, 195, 224, 175560] 78:[3, 65, 96, 75208] 79:[5, 39, 72, 56392] 80:[13, 15, 56, 43848] 81:[1, 224, 255, 229440] 82:[2, 112, 144, 129540] 83:[4, 56, 90, 80940] 84:[7, 32, 69, 62040] 85:[8, 28, 66, 59340] 86:[14, 16, 60, 53940] 87:[1, 255, 288, 294848] 88:[3, 85, 120, 122816] 89:[5, 51, 88, 90048] 90:[15, 17, 64, 65472] 91:[1, 288, 323, 373320] 92:[2, 144, 180, 208012] 93:[3, 96, 133, 153680] 94:[4, 72, 110, 127092] 95:[6, 48, 88, 101660] 96:[8, 36, 78, 90100] 97:[9, 32, 75, 86632] 98:[12, 24, 70, 80852] 99:[16, 18, 68, 78540] 100:[1, 323, 360, 466488] 101:[17, 19, 72, 93240] 102:[1, 360, 399, 576080] 103:[2, 180, 220, 317604] 104:[3, 120, 161, 232408] 105:[4, 90, 132, 190532] 106:[5, 72, 115, 165984] 107:[6, 60, 104, 150100] 108:[8, 45, 91, 131328] 109:[9, 40, 87, 125552] 110:[10, 36, 84, 121220] 111:[12, 30, 80, 115444] 112:[15, 24, 77, 111112] 113:[18, 20, 76, 109668] 114:[1, 399, 440, 703920] 115:[3, 133, 176, 281520] 116:[7, 57, 104, 166320] 117:[19, 21, 80, 127920] 118:[1, 440, 483, 851928] 119:[2, 220, 264, 465612] 120:[4, 110, 156, 275100] 121:[5, 88, 135, 238056] 122:[8, 55, 105, 185136] 123:[10, 44, 96, 169260] 124:[11, 40, 93, 163968] 125:[20, 22, 84, 148092] 126:[3, 161, 208, 402600] 127:[7, 69, 120, 232232] 128:[21, 23, 88, 170280] 129:[2, 264, 312, 660100] 130:[3, 176, 225, 476008] 131:[4, 132, 182, 385020] 132:[6, 88, 140, 296148] 133:[8, 66, 120, 253828] 134:[11, 48, 105, 222088] 135:[12, 44, 102, 215740] 136:[16, 33, 95, 200928] 137:[22, 24, 92, 194580] 138:[5, 115, 168, 386976] 139:[23, 25, 96, 221088] 140:[2, 312, 364, 909900] 141:[3, 208, 261, 652400] 142:[4, 156, 210, 524900] 143:[6, 104, 160, 399900] 144:[8, 78, 136, 339900] 145:[12, 52, 114, 284900] 146:[13, 48, 111, 277400] 147:[16, 39, 105, 262400] 148:[24, 26, 100, 249900] 149:[3, 225, 280, 757016] 150:[5, 135, 192, 519064] 151:[9, 75, 136, 367640] 152:[15, 45, 112, 302744] 153:[25, 27, 104, 281112] 154:[4, 182, 240, 699732] 155:[7, 104, 165, 481032] 156:[8, 91, 153, 446040] 157:[13, 56, 123, 358560] 158:[14, 52, 120, 349812] 159:[26, 28, 108, 314820] 160:[9, 87, 152, 476560] 161:[27, 29, 112, 351120] 162:[4, 210, 272, 914892] 163:[5, 168, 231, 776968] 164:[6, 140, 204, 686140] 165:[7, 120, 185, 622224] 166:[8, 105, 171, 575128] 167:[10, 84, 152, 511212] 168:[12, 70, 140, 470844] 169:[14, 60, 132, 443932] 170:[15, 56, 129, 433840] 171:[20, 42, 120, 403564] 172:[21, 40, 119, 400200] 173:[24, 35, 117, 393472] 174:[28, 30, 116, 390108] 175:[29, 31, 120, 431880] 176:[5, 192, 259, 995472] 177:[6, 160, 228, 876308] 178:[8, 120, 190, 730236] 179:[10, 96, 168, 645668] 180:[12, 80, 154, 591852] 181:[15, 64, 141, 541880] 182:[16, 60, 138, 530348] 183:[20, 48, 130, 499596] 184:[24, 40, 126, 484220] 185:[30, 32, 124, 476532] 186:[11, 93, 168, 688000] 187:[31, 33, 128, 524160] 188:[8, 136, 210, 914628] 189:[16, 68, 150, 653268] 190:[17, 64, 147, 640200] 191:[32, 34, 132, 574860] 192:[11, 105, 184, 850680] 193:[15, 77, 160, 739704] 194:[21, 55, 144, 665720] 195:[33, 35, 136, 628728] 196:[12, 102, 184, 901460] 197:[17, 72, 159, 778960] 198:[18, 68, 156, 764260] 199:[24, 51, 145, 710360] 200:[34, 36, 140, 685860] 201:[35, 37, 144, 746352] 202:[18, 76, 168, 919820] 203:[19, 72, 165, 903392] 204:[24, 57, 155, 848632] 205:[36, 38, 148, 810300] 206:[37, 39, 152, 877800] 207:[38, 40, 156, 948948] time = 14mn, 57,561 ms. gp> quit Good bye! bash-2.05a$
M |
max{a,b,c,d}<=M を満たす Diophantusの4つ組 {a,b,c,d}の個数 |
pari/gp(gp2c)による 計算時間[s] (LOOX T9/80W) |
103 | 3 | 0.197 |
104 | 18 | 0.384 |
105 | 69 | 8.089 |
106 | 207 | 223.827 |
107 | 585 | 6367.239 |
108 | 1548 | 194316.923 |
Last Update: 2007.01.01 |
H.Nakao |