疑問: x^4+x^3+x^2+x+1=31^e (y^2+y+1) となる整数 x, y, e は x=2, y=5 または -6, e=0 のみか?
> function RP(E,fd,M) function> T0:=Realtime(); function> for J:=1 to #fd do function|for> FD:=fd[J]; function|for> F,m:=AssociatedEllipticCurve(FD); F; IsIsomorphic(F,E); Isomorphism(F,E); function|for> for K:=1 to #pts do function|for|for> end for; //K function|for> end for; //J function> T1:=Realtime(T0); function> printf "realtime="; T1; function> return #fd; function> end function; > > SetClassGroupBounds("GRH"); > E:=EllipticCurve([0, 1, 1, 2458884860942400, 1844163645706800]); > td:=TwoDescent(E:RemoveTorsion); > #td; // td; 3 > td; [ Hyperelliptic Curve defined by y^2 = 44803441*x^4 - 30891730*x^3 + 4321936*x^2 - 45980158*x - 211635405 over Rational Field, Hyperelliptic Curve defined by y^2 = 37640416*x^4 + 21599884*x^3 + 2011864*x^2 - 43173556*x - 267505351 over Rational Field, Hyperelliptic Curve defined by y^2 = 4*x^4 + 4*x^3 + 4*x^2 + 4*x - 2458884860942399 over Rational Field ] > > printf "root number="; RootNumber(E); root number=1 > fd:=[]; time fd:=FourDescent(td[1]:RemoveTorsion); #fd; // fd; Time: 772.688 2 > RP(E,fd,10^8); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=91.698 2 > RP(E,fd,10^10); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=2823.880 2 > RP(E,fd,10^12); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=59057.801 2 > fd2:=[]; time fd2:=FourDescent(td[2]:RemoveTorsion); #fd2; // fd; Time: 725.250 2 > RP(E,fd2,10^8); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) J=2 Elliptic Curve defined by y^2 +RP y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=84.977 2 > RP(E,fd2,10^10); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=2730.495 2 > fd3:=[]; time fd3:=FourDescent(td[3]:RemoveTorsion); #fd3; // fd; Time: 83.797 2 > RP(E,fd3,10^8); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) (-3/4 : 1/8 : 1) height 19.1055365278796761222723187846 true (-3/4 : 1/8 : 1) (-7187104468204107359208072694806042636473787443840576210879831433443/9582805957605492717345004151678023034951143428806\ 898460663605465124 : -7045351335635224138896200843871219473251417832371747574788990868078087123940465863193858685729549\ 9151/29664637202674627953247161447888905998908712436733741994796073695329953575909485887005608026299035432 : 1) height 171.949828750917085100450869062 true (-7187104468204107359208072694806042636473787443840576210879831433443/95828059576054927173450041516780230349511434\ 28806898460663605465124 : 407888761536776134357148469908232887336054658869837337530938349854509176634951727449329788309\ 96463719/29664637202674627953247161447888905998908712436733741994796073695329953575909485887005608026299035432 : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=86.053 2 > RP(E,fd3,10^12); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) (-7187104468204107359208072694806042636473787443840576210879831433443/9582805957605492717345004151678023034951143428806\ 898460663605465124 : -7045351335635224138896200843871219473251417832371747574788990868078087123940465863193858685729549\ 9151/29664637202674627953247161447888905998908712436733741994796073695329953575909485887005608026299035432 : 1) height 171.949828750917085100450869062 true (-7187104468204107359208072694806042636473787443840576210879831433443/95828059576054927173450041516780230349511434\ 28806898460663605465124 : 407888761536776134357148469908232887336054658869837337530938349854509176634951727449329788309\ 96463719/29664637202674627953247161447888905998908712436733741994796073695329953575909485887005608026299035432 : 1) (-3/4 : 1/8 : 1) height 19.1055365278796761222723187846 true (-3/4 : 1/8 : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=48452.226 2 > RP(E,fd2,10^12); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=61091.263 2 > RP(E,fd,10^13); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 + 2458884860942400*x + 1844163645706800 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=292589.482 2E2(v)のMordell-Weil群のrankは1,その生成元はQ=[-3/4, 1/8]である。
39342157775078393/40, -60894003402094777851252481842259193158901059677417/61912215135966481480682911881236360, 3708079650334326609114575620600835408900308238915133592193251258649160776329721652838065087769423569/7540165278241531528557895517777296272032724725274817226281283708192270650780005939440, -8883451941124878355747446208792490894779003369596849123938453393571817222706716598163812126498899415870900613410125798001136087205974305824064705569605704802756908209/18063985187415756495055207754984840366946647234753594540001475296223246194032655414529092575187857296629081231084251894920553495999629005370376657622640, ...
(16:34) gp > v=v1(31,10) K=31^5 %17 = [4, 4, 4, 4, -2458884860942399] (16:54) gp > e0=E0(v) v=[4, 4, 4, 4, -2458884860942399] I=-118026473325235184 J=-1770397099878528560 %18 = [0, 0, 0, 3186714779781349968, 47800721696720271120, 0, 6373429559562699936, 191202886786881084480, -10155151087676897822804061916493601024, -152962309429504798464, -41299823545966314247680, -2071140483968808798037110467072700976956699317175874203648, 1644138091856557539307734422532563414664056674709504/951468803157730510928360669623102351817641411243, Vecsmall([1]), [Vecsmall([128, -1])], [0, 0, 0, 0, 0, 0, 0, 0]] (16:54) gp > elltors(e0) %19 = [1, [], []] (16:54) gp > e2=E2(v) v=[4, 4, 4, 4, -2458884860942399] I=-118026473325235184 J=-1770397099878528560 rr=[6, 12, 0, 108] time = 25 ms. %20 = [0, 1, 1, 2458884860942400, 1844163645706800, 4, 4917769721884800, 7376654582827201, -6046114759371718408361534932799, -118026473325235184, -885198549939264280, -951468803157730510928360669623102351817641411243, 1644138091856557539307734422532563414664056674709504/951468803157730510928360669623102351817641411243, Vecsmall([1]), [Vecsmall([128, -1])], [0, 0, 0, 0, 0, [951468803157730510928360669623102351817641411243, 1, [7, 1; 223, 1; 12343, 1; 129491, 1; 52667462441542087, 1; 7240839851976361073, 1], [[1, 5, 0, 1], [1, 5, 0, 1], [1, 5, 0, 1], [1, 5, 0, 1], [1, 5, 0, 1], [1, 5, 0, 1]]], 0, [[]~]]] (16:54) gp > Q=[-3/4, 1/8] %21 = [-3/4, 1/8] (16:55) gp > P=ellchangepointinv(Q,[6, 12, 0, 108]) %22 = [-15, 135] (16:55) gp > ss1x(v,P,10) v=[4, 4, 4, 4, -2458884860942399] I=-118026473325235184 J=-1770397099878528560 time = 3 ms. %23 = [39342157775078393/40, -60894003402094777851252481842259193158901059677417/61912215135966481480682911881236360, 3708079650334326609114575620600835408900308238915133592193251258649160776329721652838065087769423569/7540165278241531528557895517777296272032724725274817226281283708192270650780005939440, -8883451941124878355747446208792490894779003369596849123938453393571817222706716598163812126498899415870900613410125798001136087205974305824064705569605704802756908209/18063985187415756495055207754984840366946647234753594540001475296223246194032655414529092575187857296629081231084251894920553495999629005370376657622640] (16:55) gp > ww=ss1x(v,P,20)[1..5] v=[4, 4, 4, 4, -2458884860942399] I=-118026473325235184 J=-1770397099878528560 time = 27 ms. %24 = [39342157775078393/40, -60894003402094777851252481842259193158901059677417/61912215135966481480682911881236360, 3708079650334326609114575620600835408900308238915133592193251258649160776329721652838065087769423569/7540165278241531528557895517777296272032724725274817226281283708192270650780005939440, -8883451941124878355747446208792490894779003369596849123938453393571817222706716598163812126498899415870900613410125798001136087205974305824064705569605704802756908209/18063985187415756495055207754984840366946647234753594540001475296223246194032655414529092575187857296629081231084251894920553495999629005370376657622640, 837283698467463207972436700694602930910802144060108478919791084168164529931474156065628730465248761046314148881143628339767529735218505612867871329127479950719074790372203097880241033283771500824555220513934990226090410475279385542328136547450099337/2553851885565405593030286874012119201017955291795171309283894990855310161490225690009308643510641779544332129537793536275814110829999767784713455456076780703014663578109068579264730349919720216821971123286575777392727175090375392072280] (16:56) gp > rr(v,ww,31^5) [39342157775078393/40, 1547805378399162037017049893710109/45806641600] [39342157775078393/40, -1547805378399162037017095700351709/45806641600] [-60894003402094777851252481842259193158901059677417/61912215135966481480682911881236360, 3708079650334328494155840311466360452413702199285246877902644145539701045886734874928026123974894629/109739039505594899773708177181606809939637825138388178348802368426184091889600] [-60894003402094777851252481842259193158901059677417/61912215135966481480682911881236360, -3708079650334328494155950050505866047313475907462428484712583783364839434065083677296452308066784229/109739039505594899773708177181606809939637825138388178348802368426184091889600] [3708079650334326609114575620600835408900308238915133592193251258649160776329721652838065087769423569/7540165278241531528557895517777296272032724725274817226281283708192270650780005939440, 13749854693223555871300199396101419524221626945480593738085535195032427623662068652238837142938882625312854740700955240432547184557090101792427496016007855662783828736364197042761895433038969499589241/1627684396951725587290786926743883438848324685620485563946252015748807054169421920339900877887158496089779667651501385773756440834214498411128765660505670856862021143585928953600] [3708079650334326609114575620600835408900308238915133592193251258649160776329721652838065087769423569/7540165278241531528557895517777296272032724725274817226281283708192270650780005939440, -13749854693223555871301827080498371249808917732407337621524383519718048109226014904254585949993052047233194641578842398928636964224741603178201252456842070161194957502024702713618757454182555428542841/1627684396951725587290786926743883438848324685620485563946252015748807054169421920339900877887158496089779667651501385773756440834214498411128765660505670856862021143585928953600] [-8883451941124878355747446208792490894779003369596849123938453393571817222706716598163812126498899415870900613410125798001136087205974305824064705569605704802756908209/18063985187415756495055207754984840366946647234753594540001475296223246194032655414529092575187857296629081231084251894920553495999629005370376657622640, 78915718390275288989245863908446225860504593809091853195286059211376457764287570734490803148100274106789055674814150562332854093746693696553571951033274332902556627054042925692756587313532673111024165636326694039470557300802176050333555542281310695884117893561932944913944392993018872431887081916792320426743514836320298072847230601/9341908432050002318123522177441222634740611654202905569445019204303991234774196408902714031025155817952935238137047990545715552776697639051537333594770843835274723240815430173847740005636353363254235583887664194744014967503181184727798756711656692047870310223702737101457672246642205758393180909818179804409600] [-8883451941124878355747446208792490894779003369596849123938453393571817222706716598163812126498899415870900613410125798001136087205974305824064705569605704802756908209/18063985187415756495055207754984840366946647234753594540001475296223246194032655414529092575187857296629081231084251894920553495999629005370376657622640, -78915718390275288989255205816878275862822717331269294417920799823030660669857015753695107139335048303197958388845175718150807028984830744544117666586051030541608164387637696536591862036773488541198013376332330392833811536386063714528299557248813877068845692318644601605992263303242575168988539589038962632501908017230116252651640201/9341908432050002318123522177441222634740611654202905569445019204303991234774196408902714031025155817952935238137047990545715552776697639051537333594770843835274723240815430173847740005636353363254235583887664194744014967503181184727798756711656692047870310223702737101457672246642205758393180909818179804409600] [837283698467463207972436700694602930910802144060108478919791084168164529931474156065628730465248761046314148881143628339767529735218505612867871329127479950719074790372203097880241033283771500824555220513934990226090410475279385542328136547450099337/2553851885565405593030286874012119201017955291795171309283894990855310161490225690009308643510641779544332129537793536275814110829999767784713455456076780703014663578109068579264730349919720216821971123286575777392727175090375392072280, 701043991719354920267914296677106677406402487192870099107125986429799915272104401837715148961987132010577672856947758364935011031147138833873622411500186480309190904957250575626154208790194126832817936853662280194305855467692122503496241726113191397086529226308780229036485298493387494344196538167512855227619495055437765963506717342074058223982219128412496694641546162122074227538595160161443294891014549394941506759754993170378030351685535575792467318781975288778530631707213361571949271748188949/186723887837637194276630907343977641222536142168502735478582709986817667916466771938943952789931228717743295624384957647172106785439270300709012361088911964521879574454139555708083160154066851314574272219345719246729621855148916735924318047522582601893150810519226942261492196196151679187326352778226202971649785521169571572165950705382200627616983800836441371176706493630258445569807333461291450703555206622827665870765069523731442624883659893697115385979031797930966197758400] [837283698467463207972436700694602930910802144060108478919791084168164529931474156065628730465248761046314148881143628339767529735218505612867871329127479950719074790372203097880241033283771500824555220513934990226090410475279385542328136547450099337/2553851885565405593030286874012119201017955291795171309283894990855310161490225690009308643510641779544332129537793536275814110829999767784713455456076780703014663578109068579264730349919720216821971123286575777392727175090375392072280, -701043991719354920268101020564944314600679118100214076748348522571968418007582984547701966629903598782516616809737689593652754326771523791520794518285625750609899917318339487590676088364648266388526020013816347045620429739911468222742971347968340313822453544356302811638378449303906721286458030363709006906806821408215992166478367127595227795554385079117878895269163145922910668909771866655073553336584356728402798210458548377000858017556300645316198761406858948672227747093192393369880237945947349/186723887837637194276630907343977641222536142168502735478582709986817667916466771938943952789931228717743295624384957647172106785439270300709012361088911964521879574454139555708083160154066851314574272219345719246729621855148916735924318047522582601893150810519226942261492196196151679187326352778226202971649785521169571572165950705382200627616983800836441371176706493630258445569807333461291450703555206622827665870765069523731442624883659893697115385979031797930966197758400] time = 1 ms. (16:58) gp > F(39342157775078393/40, 1547805378399162037017049893710109/45806641600, 31^10) %26 = 0 (16:58) gp > F(837283698467463207972436700694602930910802144060108478919791084168164529931474156065628730465248761046314148881143628339767529735218505612867871329127479950719074790372203097880241033283771500824555220513934990226090410475279385542328136547450099337/2553851885565405593030286874012119201017955291795171309283894990855310161490225690009308643510641779544332129537793536275814110829999767784713455456076780703014663578109068579264730349919720216821971123286575777392727175090375392072280, -701043991719354920268101020564944314600679118100214076748348522571968418007582984547701966629903598782516616809737689593652754326771523791520794518285625750609899917318339487590676088364648266388526020013816347045620429739911468222742971347968340313822453544356302811638378449303906721286458030363709006906806821408215992166478367127595227795554385079117878895269163145922910668909771866655073553336584356728402798210458548377000858017556300645316198761406858948672227747093192393369880237945947349/186723887837637194276630907343977641222536142168502735478582709986817667916466771938943952789931228717743295624384957647172106785439270300709012361088911964521879574454139555708083160154066851314574272219345719246729621855148916735924318047522582601893150810519226942261492196196151679187326352778226202971649785521169571572165950705382200627616983800836441371176706493630258445569807333461291450703555206622827665870765069523731442624883659893697115385979031797930966197758400, 31^10) %27 = 0
> SetClassGroupBounds("GRH"); > E:=EllipticCurve([0, 1, 1, -2625542612628496320, -647271871244665951557896640]); > td:=TwoDescent(E:RemoveTorsion); > #td; // td; 3 > td; [ Hyperelliptic Curve defined by y^2 = 4*x^4 + 62900*x^3 + 2589672640*x^2 - 47681958871240*x + 2298376153850005537 over Rational Field, Hyperelliptic Curve defined by y^2 = -1612369551*x^4 + 4640119060*x^3 + 4375497604*x^2 - 7288752612*x - 280075700 over Rational Field, Hyperelliptic Curve defined by y^2 = 3022945774*x^4 + 85572898*x^3 + 2452254124*x^2 + 2784753712*x + 3328083556 over Rational Field ] > > printf "root number="; RootNumber(E); root number=1 > fd:=[]; time fd:=FourDescent(td[1]:RemoveTorsion); #fd; // fd; Time: 140.578 2 > RP(E,fd,10^8); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) (-1479172803/4 : -132198110803359/8 : 1) height 19.1474990850522320886294916794 true (-1479172803/4 : 132198110803351/8 : 1) (-12957648225154959741172074974614036958108268777128411633040841646640037012643/115093423788675461704383456348124749543\ 24104142119050885655423884324 : 115937627744385316588618754853714560701789259005430683180329356476819833100289501864440\ 4953233432671253647280517969/390459293754494001823969376529687219619502676883870413644966528946770261350333719042401023\ 55391873832 : 1) height 172.327491765470088797665425115 true (-12957648225154959741172074974614036958108268777128411633040841646640037012643/1150934237886754617043834563481247\ 4954324104142119050885655423884324 : 1159376277443853165886187548537145607017892590054306831803293564768198331002895018\ 644404953233432671253647280517969/3904592937544940018239693765296872196195026768838704136449665289467702613503337190424\ 0102355391873832 : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=115.102 2 > fd2:=[]; time fd2:=FourDescent(td[2]:RemoveTorsion); #fd2; // fd; Time: 790.313 2 > RP(E,fd2,10^8); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=115.332 2 > RP(E,fd2,10^10); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=2854.851 2 > fd3:=[]; time fd3:=FourDescent(td[3]:RemoveTorsion); #fd3; // fd; Time: 1557.109 2 > RP(E,fd3,10^8); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=75.002 2 > RP(E,fd3,10^10); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=2935.126 2 > RP(E,fd2,10^12); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=58206.112 2 > RP(E,fd3,10^12); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=58153.670 2 > RP(E,fd2,10^13); J=1 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) J=2 Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2625542612628496320*x - 647271871244665951557896640 over Rational Field true Elliptic curve isomorphism from: CrvEll: F to CrvEll: E Taking (x : y : 1) to (x : y : 1) realtime=291361.367 2 >E2(v)の2つの有理点
-45079555783944007/34115641497640, 43154726532110578883489277017787709978986635143383/57869376227821933911992553720162600261240058760, -3607742028296412930594216231505115460983253874592264333981455558924096590450190500828418937705580369/6922443205261149977094639530878315452857641673628627198982782684750760160579368957692084158386960, -4637018907300347821122681248522460817206516582067794814521823576165781064574453949169273494266293145471067691576255268985990441218574931339803745027968236032222627791/22606169292753789913268922919076302341761543262237911401339575416610379783592416365218821072727672895820156317781174444546085557322705190165503165870395047109903760, 646770007562675546431048353956922681772508379858634357920990738905273034594610550586447608345602377212929358840952845842885226251708675715156098018345228629499377749164243383080293315875473974563414624264554916389120208832610622602443816430917243337/2811323323117005911662626646546138416825511228099250895888908874293815087214682605987470628869345165706118168798975271858038278896049750102570002125909779008429410882840067813324148305092823290281256612952182590031258802130716732364444451017979480, ...
(16:24) gp > v=v2(31,10) %1 = [3844, 3694084, 3550014724, 3411564149764, 3278513147923201] (16:25) gp > e0=E0(v) v=[3844, 3694084, 3550014724, 3411564149764, 3278513147923201] I=126026045406167823376 J=1118485791998470219418031513040 %2 = [0, 0, 0, -3402703225966531231152, -30199116383958695924286850852080, 0, -6805406451933062462304, -120796465535834783697147403408320, -11578389244003038500542444351192200855247104, 163329754846393499095296, 26092036555740313278583839136197120, 2127482411331527594623346632809271751399160414837785111649944358912, 2255333459336843360420286711336834600268601032708096/1101237040691818047080218120770123186026973527957, Vecsmall([1]), [Vecsmall([128, 1])], [0, 0, 0, 0, 0, 0, 0, 0]] (16:26) gp > elltors(e0) %3 = [1, [], []] (16:26) gp > e2=E2(v) v=[3844, 3694084, 3550014724, 3411564149764, 3278513147923201] I=126026045406167823376 J=1118485791998470219418031513040 rr=[6, 12, 0, 108] time = 1 ms. %4 = [0, 1, 1, -2625542612628496320, -647271871244665951557896640, 4, -5251085225256992640, -2589087484978663806231586559, -6893474013317157768664047110485128959, 126026045406167823376, 559242895999235109709015756520, 977351927267535303365924884466386882422386771351393909717, 2255333459336843360420286711336834600268601032708096/1101237040691818047080218120770123186026973527957, Vecsmall([1]), [Vecsmall([128, 1])], [0, 0, 0, 0, 0, [1058288796104837143244089614060088381771921560366677, 4, [31, 2; 1101237040691818047080218120770123186026973527957, 1], [[2, -1, 0, 4], [1, 5, 0, 1]]], 0, [[31]~]]] (16:26) gp > Q1=[-1479172803/4, -132198110803359/8] %5 = [-1479172803/4, -132198110803359/8] (16:27) gp > Q2=[-12957648225154959741172074974614036958108268777128411633040841646640037012643/11509342378867546170438345634812474954324104142119050885655423884324,1159376277443853165886187548537145607017892590054306831803293564768198331002895018644404953233432671253647280517969/39045929375449400182396937652968721961950267688387041364496652894677026135033371904240102355391873832] %6 = [-12957648225154959741172074974614036958108268777128411633040841646640037012643/11509342378867546170438345634812474954324104142119050885655423884324, 1159376277443853165886187548537145607017892590054306831803293564768198331002895018644404953233432671253647280517969/39045929375449400182396937652968721961950267688387041364496652894677026135033371904240102355391873832] (16:27) gp > matdet(ellheightmatrix(e2,[Q1,Q2])) time = 1 ms. %7 = -2.407412430484044816 E-35 (16:27) gp > P1=ellchangepointinv(Q1,[6, 12, 0, 108]) %8 = [-13312555215, -3569348991690585] (16:28) gp > ss1(v,P1,10) v=[3844, 3694084, 3550014724, 3411564149764, 3278513147923201] I=126026045406167823376 J=1118485791998470219418031513040 e=[0, 0, 0, -3402703225966531231152, -30199116383958695924286850852080] height(e,P)=19.147499085052232088629491679431531910 3*P: 34115641497640*x + 45079555783944007 5*P: 57869376227821933911992553720162600261240058760*x - 43154726532110578883489277017787709978986635143383 7*P: 6922443205261149977094639530878315452857641673628627198982782684750760160579368957692084158386960*x + 3607742028296412930594216231505115460983253874592264333981455558924096590450190500828418937705580369 9*P: 22606169292753789913268922919076302341761543262237911401339575416610379783592416365218821072727672895820156317781174444546085557322705190165503165870395047109903760*x + 4637018907300347821122681248522460817206516582067794814521823576165781064574453949169273494266293145471067691576255268985990441218574931339803745027968236032222627791 time = 4 ms. (16:28) gp > ww=ss1x(v,P1,20)[1..5] v=[3844, 3694084, 3550014724, 3411564149764, 3278513147923201] I=126026045406167823376 J=1118485791998470219418031513040 time = 28 ms. %10 = [-45079555783944007/34115641497640, 43154726532110578883489277017787709978986635143383/57869376227821933911992553720162600261240058760, -3607742028296412930594216231505115460983253874592264333981455558924096590450190500828418937705580369/6922443205261149977094639530878315452857641673628627198982782684750760160579368957692084158386960, -4637018907300347821122681248522460817206516582067794814521823576165781064574453949169273494266293145471067691576255268985990441218574931339803745027968236032222627791/22606169292753789913268922919076302341761543262237911401339575416610379783592416365218821072727672895820156317781174444546085557322705190165503165870395047109903760, 646770007562675546431048353956922681772508379858634357920990738905273034594610550586447608345602377212929358840952845842885226251708675715156098018345228629499377749164243383080293315875473974563414624264554916389120208832610622602443816430917243337/2811323323117005911662626646546138416825511228099250895888908874293815087214682605987470628869345165706118168798975271858038278896049750102570002125909779008429410882840067813324148305092823290281256612952182590031258802130716732364444451017979480] (16:32) gp > rr2(v,ww,31^2) [-45079555783944007/32785131479232040, 1696271066495969627871311568023709/37544419186951497487921600] [-45079555783944007/32785131479232040, -1696271104040388814822809055945309/37544419186951497487921600] [43154726532110578883489277017787709978986635143383/55612470554936878489424844125076258851051696468360, 5539401308041582525861614117570667184523950600798593518064514350703922614427415069682128059839819429/108027893709587172938817082976286431074476959546992391640042362704369951927584525836395249600] [43154726532110578883489277017787709978986635143383/55612470554936878489424844125076258851051696468360, -5539401416069476235448787056387750160810381675275553065056905990746285318797366997266653896235069029/108027893709587172938817082976286431074476959546992391640042362704369951927584525836395249600] [-3607742028296412930594216231505115460983253874592264333981455558924096590450190500828418937705580369/6652467920255965127987948589174061150196193648357110738222454160045480514316773568342092876209868560, 36461410793266530086554291318080592059155548080223641081098678681158807269828548387059118993277538233767698071737443724542764908587919382604179047205091734569482973393042087409186633067895026088907641/1545813546131169799803793078562661152535323911396791584932568244507443462771477845225456912550376380960167211516255255478824672140654735204809787794533818545374544080901036048116991474487033600] [-3607742028296412930594216231505115460983253874592264333981455558924096590450190500828418937705580369/6652467920255965127987948589174061150196193648357110738222454160045480514316773568342092876209868560, -36461412339080076217724091121873670621816700615547552477890263613727051777272011158536964218734450784144079031904655240798020387412591523258914252014879529103301518767586168310222681184886500575941241/1545813546131169799803793078562661152535323911396791584932568244507443462771477845225456912550376380960167211516255255478824672140654735204809787794533818545374544080901036048116991474487033600] [-4637018907300347821122681248522460817206516582067794814521823576165781064574453949169273494266293145471067691576255268985990441218574931339803745027968236032222627791/21724528690336392106651434925232326550432843075010632856687331975362574972032312126975287050891293652883170221387708641208788220587119687749048542401449640272617513360, 428535329519426814699263027961896801131951138174087481386014592980811525710832230594732379243811064061422869290531226093171101868476118350129402445314752574868451720638505041619488956985607786841731016950583659909498833572136335951429029990419155314531806485518922583793612584089405142546995011729342653449500895658321376648162014601/16485125486859496324015701177278109172357927756909197781325381271452780007098792771078538119880258360385396141467823858401320613345443108867601302569455257896332996864124841978407422419347622451770392419044115763602905430151555361520826782045830434705486776304517897545783633810675677755903982472344783362980184304266982649600] [-4637018907300347821122681248522460817206516582067794814521823576165781064574453949169273494266293145471067691576255268985990441218574931339803745027968236032222627791/21724528690336392106651434925232326550432843075010632856687331975362574972032312126975287050891293652883170221387708641208788220587119687749048542401449640272617513360, -428535346004552301558759351977597978410060310532015238295212374306192797163612237693525150322349183941681229675927367560994960269796731695572511312916055144323709616971501905744330935393030206189353468720976078953614597175041766102984391511245937360362241191005698888311510129873038953222672767633325125794284258638505680915144664201/16485125486859496324015701177278109172357927756909197781325381271452780007098792771078538119880258360385396141467823858401320613345443108867601302569455257896332996864124841978407422419347622451770392419044115763602905430151555361520826782045830434705486776304517897545783633810675677755903982472344783362980184304266982649600] [646770007562675546431048353956922681772508379858634357920990738905273034594610550586447608345602377212929358840952845842885226251708675715156098018345228629499377749164243383080293315875473974563414624264554916389120208832610622602443816430917243337/2701681713515442681107784207330839018569316290203380110949241428196356298813309984353959274343440704243579560215815236255574786019103809848569772042999297627100663858409305168604506521194203181960287605047047469020039708847618779802231117428278280280, 8366003891504609895813809440779855191933971997250911660936209514191654272440932051387251312928679568250071189460492127919662088802117262545964429687488164010468517164377212111271532646524009585597442395040852583853594252123325327312127703546351379624674295131625397682116328927304884049784745908311080449904552665178100929062682810437918695921093348920417443475081058262921225552259854378126017948223981124350012219829294804740828931318964079024139897858142776956691834839677014690635588356286252949/254952865390375652444700980036028227223186987245358335307586325309161996520586159941893977478580247332749460240461777472438573760311140623504162909844763723794505313701237901483629010840992291837444673017409895163971156363508570317277529478827936106319394226471215090048717159049481034357640797996295763759512845462311266776319107641256507584794201451653840919382073724481875311832221006550659592863816716681878762871608540816802140389887185507109085654310884154657406939198852775942635518400] [646770007562675546431048353956922681772508379858634357920990738905273034594610550586447608345602377212929358840952845842885226251708675715156098018345228629499377749164243383080293315875473974563414624264554916389120208832610622602443816430917243337/2701681713515442681107784207330839018569316290203380110949241428196356298813309984353959274343440704243579560215815236255574786019103809848569772042999297627100663858409305168604506521194203181960287605047047469020039708847618779802231117428278280280, -8366004146457475286189461885480835227962199220437898906294544821777979581602928571973411254822657046830318522209952368381439561240691022857105053191651073855232240958882525812509434130153020426589734232485525601263489416094481690820698020823880858452610401451019624153331418976022043099265780265951878446200316424690946391373949586757026337177600933714618895128921977644994950034135166210347024498883573988166728901708057676349369748121104468911325404967228431267575989497083953889488364298921771349/254952865390375652444700980036028227223186987245358335307586325309161996520586159941893977478580247332749460240461777472438573760311140623504162909844763723794505313701237901483629010840992291837444673017409895163971156363508570317277529478827936106319394226471215090048717159049481034357640797996295763759512845462311266776319107641256507584794201451653840919382073724481875311832221006550659592863816716681878762871608540816802140389887185507109085654310884154657406939198852775942635518400] time = 1 ms. (16:33) gp > F(-45079555783944007/32785131479232040, 1696271066495969627871311568023709/37544419186951497487921600, 31^(-10)) %15 = 0 (16:34) gp > F(646770007562675546431048353956922681772508379858634357920990738905273034594610550586447608345602377212929358840952845842885226251708675715156098018345228629499377749164243383080293315875473974563414624264554916389120208832610622602443816430917243337/2701681713515442681107784207330839018569316290203380110949241428196356298813309984353959274343440704243579560215815236255574786019103809848569772042999297627100663858409305168604506521194203181960287605047047469020039708847618779802231117428278280280, -8366004146457475286189461885480835227962199220437898906294544821777979581602928571973411254822657046830318522209952368381439561240691022857105053191651073855232240958882525812509434130153020426589734232485525601263489416094481690820698020823880858452610401451019624153331418976022043099265780265951878446200316424690946391373949586757026337177600933714618895128921977644994950034135166210347024498883573988166728901708057676349369748121104468911325404967228431267575989497083953889488364298921771349/254952865390375652444700980036028227223186987245358335307586325309161996520586159941893977478580247332749460240461777472438573760311140623504162909844763723794505313701237901483629010840992291837444673017409895163971156363508570317277529478827936106319394226471215090048717159049481034357640797996295763759512845462311266776319107641256507584794201451653840919382073724481875311832221006550659592863816716681878762871608540816802140389887185507109085654310884154657406939198852775942635518400, 31^(-10) ) %16 = 0
> SetClassGroupBounds("GRH"); > E:=EllipticCurve([0, 1, 1, -3334439118038283457, -1129618869280294934909360065]); > printf "root number="; RootNumber(E); root number=-1 > // time AnalyticRank(E : Precision:=1); > td:=TwoDescent(E:RemoveTorsion); Current total memory usage: 1347.1MB, failed memory request: 27.6MB System error: Out of memory. All virtual memory has been exhausted so Magma cannot perform this statement.
e |
有理変換φ:C(e)→D(v); (x,y)→(X,Y) v=[a,b,c,d,e,g] D(v): Y^2=a*X^4+b*X^3+c*X^2+d*X+g |
E0(v)=[a1,a2,a3,a4,a6] E0(v)(Q)tors conductor(E0(v)) |
rank(E0(v)) | E0(v)(Q)/E0(v)(Q)torsの生成元 | E0(v)(Q)/E0(v)(Q)torsの生成元のheight | C(e)の有理点(赤字は整点) | e |
-10 |
[X, Y]=[31^2*x, 2*y+1] v=[3844,3694084,3550014724,3411564149764,3278513147923201] |
[0, 0, 0, -3402703225966531231152, -30199116383958695924286850852080] {O} 1058288796104837143244089614060088381771921560366677 |
>=2(even) |
[-13312555215, -3569348991690585] |
19.1474990850522 |
[-45079555783944007/32785131479232040, 1696271066495969627871311568023709/37544419186951497487921600], [-45079555783944007/32785131479232040, -1696271104040388814822809055945309/37544419186951497487921600], [43154726532110578883489277017787709978986635143383/55612470554936878489424844125076258851051696468360, 5539401308041582525861614117570667184523950600798593518064514350703922614427415069682128059839819429/108027893709587172938817082976286431074476959546992391640042362704369951927584525836395249600], [43154726532110578883489277017787709978986635143383/55612470554936878489424844125076258851051696468360, -5539401416069476235448787056387750160810381675275553065056905990746285318797366997266653896235069029/108027893709587172938817082976286431074476959546992391640042362704369951927584525836395249600], ... |
-10 |
-9 |
[X, Y]=[31^2*x, 2*y+1] v=[124, 119164, 114516604, 110050456444, 105758488642681] |
[0, 0, 0, -3540794199756939792, -1013699318047638672959207280] {O} 35523775506184168290791917207791315375836801627 |
0 | - | - | - | -9 |
-8 |
[X, Y]=[31^2*x, 2*y+1] v=[4, 3844, 3694084, 3550014724, 3411564149761] |
[0, 0, 0, -3684489281741232, -34027032259611489930480] {O} 1240825321927127291519170439672565830357 |
3 |
[-13852815, -119812996935] [-1220702940523570812/36822923449, -1606418153706007563810316956/7066061249398957] [2746755734404961985953702687657939762319252/16692827393509201256933947995235201, -4212484993575238759522852868476771659855165977685300613326670092/2156725404964007337459062898893807763639985226288449] |
15.7135118805666 38.7642041694736 94.3049542162624 |
[-46909007059207/34115641497640, 1836742752277731271045362909/1260260454061679617600], [-46909007059207/34115641497640, -1836744012538185332724980509/1260260454061679617600], [-212995151320531/290505486911263, 70569041870165632918870520295/91382261936166040845889], [12107388865193068831/9242607088459108299, 259367760534941292428997870126958842700/92500101017339676067143927484281], [12107388865193068831/9242607088459108299, -259367853035042309768673937270886326981/92500101017339676067143927484281], [-2756276844960006924321035923232520517951/2191648821212740856958229735385200063561, 6509243951560219238460495840953127325144815795539594865191594462887135397535179/5201099439561413912306624715439663381259752134975635238653435559816613201], [-2756276844960006924321035923232520517951/2191648821212740856958229735385200063561, -6509249152659658799874408147577842764808197055291729840826833116322695214148380/5201099439561413912306624715439663381259752134975635238653435559816613201], ... |
-8 |
-7 |
[X, Y]=[31*x, 2*y+1] v=[119164, 3694084, 114516604, 3550014724, 110050456441] |
[0, 0, 0, -3540794199641232912, -1013699317997949826870324080] {O} 40026623284170475670977093542602336027 |
0 | - | - | - | -7 |
-6 |
[X, Y]=[31*x, 2*y+1] v=[3844, 119164, 3694084, 114516604, 3550014721] |
[0, 0, 0, -3684489278008752, -34027032207906134999280] {O} 1343581053550667318216935997195477 |
>=1(odd) |
[-13852815, 119812996935] |
12.2795246756174 |
[-48812702407/35500147240, 1988827373534343710109/42303395457073600], [-48812702407/35500147240, -1988869676929800783709/42303395457073600], [54788327252865812847107572759383/70604415483795419935587134881160, 8928491909963989018469905591755974164677429688912059891992286629/167331861495364722316167400566341995226877975469701412081600], [54788327252865812847107572759383/70604415483795419935587134881160, -8928659241825484383192221759156540506672656566887529593404368229/167331861495364722316167400566341995226877975469701412081600], [-5815068307103098284653764661124779097092636246895494838566066769/10722650107269822533633087911136004962861981265317325601216921360, 94724718196730945341821565907267365567805495956757002919743289363251169582243902776972813588815934314336662466899432120062757241/3859394626663540555447500472552850158442439015741672486293316771445276089584367447810939031185793259836337195895086757625600], [-5815068307103098284653764661124779097092636246895494838566066769/10722650107269822533633087911136004962861981265317325601216921360, -94728577591357608882377013407739918417963938395772744592229582680022614858333487144420624527847120107596498804095327206820382841/3859394626663540555447500472552850158442439015741672486293316771445276089584367447810939031185793259836337195895086757625600], ... |
-6 |
-5 |
[X, Y]=[31*x, 2*y+1] v=[124, 3844, 119164, 3694084, 114516601] |
[0, 0, 0, -3834015781392, -1142191623481242480] {O} 3469248407303584138526015879 |
>=1(odd) |
[-4983836729995082265051821714388937527621727062513004396170553571431364743455646719418693412856467088/16297992466459357763538062688156501885666157006040601376637598104792979434854129537296324925969, 84117536887001987693633403554262887257591423852447491896402596004200771569676815357782640055678197995021361017632402162854588180026293464978174967308/2080660244323663089304369229636773428096775311355201905570574536464976257740349680656394501324387443805804772721905998747944619375789455879047] |
226.080626757000 |
[-404794888117405473383729/84702235726920689962577, 829809608671728347254667446385866664105077280165/7465628238437918567698611878105092651051489], [-404794888117405473383729/84702235726920689962577, -829817074299966785173235144997744769197728331654/7465628238437918567698611878105092651051489], [-9426925570213669224325729771778354771873606805714348303000245004408178427827184925670735027830986667254882068686618507741771231361219521222403033415371585285883867680491009161137046905247964910550367071465212621362166190/1564891984518368464924830786089488326516616229350688743611297520228733306869797871650467558439374017082332197111407724948204367452926399738001762380737217747851723184989650909275401608869610962704365100099650821332119977, 458244699934874172421014850466757395273351470270321509112193631908579310958097635200519303760683484327031148005306545556012959771844268747044569437396411513358549647025912439554643365036095089268372636249295879951232345862509539009830904049198971757891072640710035608462248879715622175640643434576211578523826963605830945568437548649911937475405978204192497388401150093705128505325833602907141986459939934337321073395105896586776888818641391/2548269431019602047145901753219816339854742980076998173561976799906403136483239052932123940396363106425339048010878805830130061565627146860374859303787396840171848350283224622884905806875411325188631194786105599270829175571623564795815981494908582828989480801838287054507153446600361673406836173325726597789174007818071384955951495425233045135979882506602393653087851058600174003552601692912342219840897889768653293830903087831335195089], [-9426925570213669224325729771778354771873606805714348303000245004408178427827184925670735027830986667254882068686618507741771231361219521222403033415371585285883867680491009161137046905247964910550367071465212621362166190/1564891984518368464924830786089488326516616229350688743611297520228733306869797871650467558439374017082332197111407724948204367452926399738001762380737217747851723184989650909275401608869610962704365100099650821332119977, -458247248204305192023061996368510615089691325013301586110367193885379217361234118439572235884623880690137573344354556434818789901905834374191429812255715300755389818874262722779266249941901964679697824880490666056831616691685110633395699865180466666473901630190837446749303386869068776002316841412384904250424752779838763639822504601407362708451114184075003990794803181556187105499837155508834898802159775235210842048399727489864720153836480/2548269431019602047145901753219816339854742980076998173561976799906403136483239052932123940396363106425339048010878805830130061565627146860374859303787396840171848350283224622884905806875411325188631194786105599270829175571623564795815981494908582828989480801838287054507153446600361673406836173325726597789174007818071384955951495425233045135979882506602393653087851058600174003552601692912342219840897889768653293830903087831335195089], ... |
-5 |
-4 |
[X, Y]=[31*x, 2*y+1] v=[4, 124, 3844, 119164, 3694081] |
[0, 0, 0, -3989606832, -38340102973680] {O} 1575320961970193443157 |
2 |
[-50496, -5861916] [67512, 156492] |
7.64167297400764 7.91332486405783 |
[-12/31, 819], [-12/31, -820], [60446/124279, 21247864874/16072081], [60446/124279, -21263936955/16072081], [-106338/282193, 68081950566/82864609], [-106338/282193, -68164815175/82864609], [-50793607/36940840, 2152835876985309/1420005889600], [-50793607/36940840, -2154255882874909/1420005889600], [-3740223415/2757760093, 11708921914232175531/7913882133760009], [-3740223415/2757760093, -11716835796365935540/7913882133760009], [6104557927/73622241, 37492393510349008624/5640202257921], [6104557927/73622241, -37492399150551266545/5640202257921], [-38590902412824304/34258928338262937, 1349457872366567944006953438967871/1221305068560078378693950622129], [-38590902412824304/34258928338262937, -1350679177435128022385647389590000/1221305068560078378693950622129], [44512655440606184/94720222351590793, 12176453494422506935137495189329351/9336025517518002139280101688209], [44512655440606184/94720222351590793, -12185789519940024937276775291017560/9336025517518002139280101688209], [53981717721929061/71529805104051623, 8974431873101315213533562465829656/5324155065789396063552310352689], [53981717721929061/71529805104051623, -8979756028167104609597114776182345/5324155065789396063552310352689], [-510519766033121605/6120068470319979, 259082110947852095917458853172942419/38975273757965377396489746681], [-510519766033121605/6120068470319979, -259082149923125853882836249662689100/38975273757965377396489746681], ... |
-4 |
-3 |
[X, Y]=[x, 2*y+1] v=[119164, 119164, 119164, 119164, 119161] |
[0, 0, 0, -3833900074512, -1142139918126311280] {O} 50812348326785052827 |
0 | - | - | - | -3 |
-2 |
[X, Y]=[x, 2*y+1] v=[3844, 3844, 3844, 3844, 3841] |
[0, 0, 0, -3985874352, -38286299274480] {O} 1700994249448277 |
3 |
[206832, 89361468] [-14415, 4021785] [937936/9, 703132948/27] |
5.36480413541343 5.41112117418481 9.19352582479814 |
[-18/13, 8286/169], [-18/13, -8455/169], [48/61, 206919/3721], [48/61, -210640/3721], [-27/119, 389175/14161], [-27/119, -403336/14161], [-2858/3069, 8682010/303831], [-2858/3069, -8985841/303831], [-3225/6083, 927493740/37002889], [-3225/6083, -964496629/37002889], [7016/28179, 902759425/25614711], [7016/28179, -928374136/25614711], [-52807/38440, 2303908509/47665600], [-52807/38440, -2351574109/47665600], [26365/102629, 373183143620/10532711641], [26365/102629, -383715855261/10532711641], [-169244/1157, 884929144691/1338649], [-169244/1157, -884930483340/1338649], [3049127/4127061, 29153320216024/549439757991], [3049127/4127061, -29702759974015/549439757991], ... |
-2 |
-1 |
[X, Y]=[x, 2*y+1] v=[124, 124, 124, 124, 121] |
[0, 0, 0, -4030992, -1230925680] {O} 52421115227 |
4 |
[-744, 36828] [-1023, 42687] [-1716, 25164] [3612, 177012] |
2.34394483473831 3.77594157574792 4.20829099324349 4.85211069961425 |
[0, 5], [0, -6], [-1, 5], [-1, -6], [2/3, 76/9], [2/3, -85/9], [-4/3, 70/9], [-4/3, -79/9], [3/10, 609/100], [3/10, -709/100], [-5/23, 2366/529], [-5/23, -2895/529], [-19/25, 2574/625], [-19/25, -3199/625], [28/9, 5249/81], [28/9, -5330/81], [42/11, 11364/121], [42/11, -11485/121], [19/66, 26285/4356], [19/66, -30641/4356], [83, 38589], [83, -38590], [-87/46, 33675/2116], [-87/46, -35791/2116], [31/90, 51071/8100], [31/90, -59171/8100], [-103/25, 52694/625], [-103/25, -53319/625], [-121/3, 80521/9], [-121/3, -80530/9], [6/127, 82871/16129], [6/127, -99000/16129], [-151/43, 111170/1849], [-151/43, -113019/1849], [-234/113, 246995/12769], [-234/113, -259764/12769], [-490/387, 1060240/149769], [-490/387, -1210009/149769], [847/1115, 11534009/1243225], [847/1115, -12777234/1243225], [-999/1390, 7834139/1932100], [-999/1390, -9766239/1932100], [-355/1419, 8872154/2013561], [-355/1419, -10885715/2013561], [1599/1117, 23025410/1247689], [1599/1117, -24273099/1247689], [-1570/2943, 34730591/8661249], [-1570/2943, -43391840/8661249], [3427/2453, 107401626/6017209], [3427/2453, -113418835/6017209], [-3509/1962, 54361145/3849444], [-3509/1962, -58210589/3849444], [130/3527, 63527355/12439729], [130/3527, -75967084/12439729], [-4760/3611, 99289170/13039321], [-4760/3611, -112328491/13039321], [-2087/8051, 284454770/64818601], [-2087/8051, -349273371/64818601], [9593/606, 529186339/367236], [9593/606, -529553575/367236], [-11309/395, 699883569/156025], [-11309/395, -700039594/156025], [12357/7838, 1299953381/61434244], [12357/7838, -1361387625/61434244], [12947/10291, 1647169649/105904681], [12947/10291, -1753074330/105904681], [-10467/13235, 732436586/175165225], [-10467/13235, -907601811/175165225], [13680/4349, 1250016474/18913801], [13680/4349, -1268930275/18913801], [-6313/14113, 814295061/199176769], [-6313/14113, -1013471830/199176769], [-17013/16841, 1434670989/283619281], [-17013/16841, -1718290270/283619281], [18029/270, 1823442229/72900], [18029/270, -1823515129/72900], [-22317/23147, 2576408625/535783609], [-22317/23147, -3112192234/535783609], [-23779/22693, 2723639441/514972249], [-23779/22693, -3238611690/514972249], ... |
-1 |
0 |
[X, Y]=[x, 2*y+1] v=[4, 4, 4, 4, 1] |
[0, 0, 0, -432, 15120] {O} 43 |
1 | [12, -108] | 0.06281650708748 |
[0, 0], [0, -1], [-1, 0], [-1, -1], [2, 5], [2, -6], [-1/3, -4/9], [-1/3, -5/9], [-6/7, -15/49], [-6/7, -34/49], [3/11, 35/121], [3/11, -156/121], [-7/40, -291/1600], [-7/40, -1309/1600], [-77/57, 2471/3249], [-77/57, -5720/3249], [-220/87, 36860/7569], [-220/87, -44429/7569], [-380/1337, -583509/1787569], [-380/1337, -1204060/1787569], [1653/2167, 4892120/4695889], [1653/2167, -9588009/4695889], [-16617/20360, -205932571/414529600], [-16617/20360, -208597029/414529600], [37627/50939, 2581829204/2594781721], [37627/50939, -5176610925/2594781721], ... |
0 |
1 |
[X, Y]=[x, 31*(2*y+1)] v=[124, 124, 124, 124, -2759] |
[0, 0, 0, 111675888, 52572773520] {O} 44934018043 |
2 |
[41385, 8692245] [63372, 16175052] |
5.12665493727146 7.55449695475695 |
[2, 0], [2, -1], [20/9, 25/81], [20/9, -106/81], [7320/1217, 9720066/1481089], [7320/1217, -11201155/1481089], [225843/120637, -3607074454/14553285769], [225843/120637, -10946211315/14553285769], [6806686/682473, 8530492945691/465769395729], [6806686/682473, -8996262341420/465769395729], [8730457/2043809, 13124267335430/4177155228481], [8730457/2043809, -17301422563911/4177155228481], [224972829/87586393, 5649398907665441/7671376238750449], [224972829/87586393, -13320775146415890/7671376238750449], [-658006915014/105530302663, 65978906858138611663820/11136644780144384891569], [-658006915014/105530302663, -77115551638282996555389/11136644780144384891569], [-8787674033311/902239724331, 12782442455821286243122834/814036520160878873397561], [-8787674033311/902239724331, -13596478975982165116520395/814036520160878873397561], ... |
1 |
2 |
[X, Y]=[x, 31*(2*y+1)] v=[4, 4, 4, 4, -2879] |
[0, 0, 0, 3732048, 56002320] {O} 1528915443883 |
2 |
[-15, 135] [43212/361, 154052388/6859] |
5.36910089452235 9.90384705882199 |
[773/57, 564340/100719], [773/57, -665059/100719], [46073/40, 2123618589/49600], [46073/40, -2123668189/49600], [-60791/4323, 3245673505/579338199], [-60791/4323, -3825011704/579338199], [-486883/34219, 208823617065/36299138791], [-486883/34219, -245122755856/36299138791], [204875144809/15290164241, 39556054096889817797340/7247462798019408288511], [204875144809/15290164241, -46803516894909226085851/7247462798019408288511], [13153279239201/958160399969, 163748010749578306486952780/28460211914131375711229791], [13153279239201/958160399969, -192208222663709682198182571/28460211914131375711229791], [28660015577164/4184115656817, 483015152898564458388759796/542711538718255814875716159], [28660015577164/4184115656817, -1025726691616820273264475955/542711538718255814875716159], [-97885094739177/84945735560, 9577225168854516460931372069/223689117684712903921600], [-97885094739177/84945735560, -9577448857972201173835293669/223689117684712903921600], [-246249737754050/33318936882791, 31276822193496687580891445499/34414698204981723642230440111], [-246249737754050/33318936882791, -65691520398478411223121885610/34414698204981723642230440111], [-176945632925437630/24064249838662047, 15949705153497257721028980525828871/17951731729223937007152487425136479], [-176945632925437630/24064249838662047, -33901436882721194728181467950965350/17951731729223937007152487425136479], ... |
2 |
3 |
[X, Y]=[x, 32^2*(2*y+1)] v=[124, 124, 124, 124, -2770439] |
[0, 0, 0, 111305987568, 51757927704720] {O} 43901511280657653883 |
>=1(odd) |
[3742016257236672362730105851039295483624615840/675721047427918441483151602212988200856009, -14359628626281490099196697869972345525760201033234240059635227387249540/555457928104763663380161967370932479512121826372468250495852027] |
105.459109939836 |
[-47930583739/370783185, 408880324672148202514/4261885278641070975], [-47930583739/370783185, -413142209950789273489/4261885278641070975], [1866112613277661821868064445983358642815898781536502982870770906665694348587200235344241082723878323252/43672049838460040293548422211742092151832327020218755672379968651066399773688294054824620296455779475, 601265909883088860027551526676340074800541419044173402099698697680583142750492359703833273794596329939726511601302053958850362053952303337796137564131786435717676239049192659933989631644890890658587567106/59124686049881066576465321120465275582803954277741402219863976483453481867283643035750097893842033959009917225243682039927581531690736246874105620615612877230550310296329904250951328748723708024769544375], [1866112613277661821868064445983358642815898781536502982870770906665694348587200235344241082723878323252/43672049838460040293548422211742092151832327020218755672379968651066399773688294054824620296455779475, -660390595932969926604016847796805350383345373321914804319562674164036624617776002739583371688438363898736428826545735998777943585643039584670243184747399312948226549345522564184940960393614598683357111481/59124686049881066576465321120465275582803954277741402219863976483453481867283643035750097893842033959009917225243682039927581531690736246874105620615612877230550310296329904250951328748723708024769544375], ... |
3 |
4 |
[X, Y]=[x, 31^2*(2*y+1)] v=[4, 4, 4, 4, -2770559] |
[0, 0, 0, 3590645328, 53859701520] {O} 1361076953440675610923 |
3 |
[-15, 135] [67276, 23369068] [384520328344344/24366273409, 29620284775872253360884/3803502180324673] |
8.80357440689441 10.1947093108344 31.4638321983372 |
[-613/21, -169241/423801], [-613/21, -254560/423801], [827395/28839, -10295413436/25782325551], [827395/28839, -15486912115/25782325551], [19448615/677887, -176363708387484/441609084163009], [19448615/677887, -265245375775525/441609084163009], [44328953/40, 1965056959887069/1537600], [44328953/40, -1965056961424669/1537600], [205608813510/5035220929, 808309426051035576495/785956943919028314271], [205608813510/5035220929, -1594266369970063890766/785956943919028314271], [-171702048482157/3768284913805, 19838407489653608125823205719/13646172315137552384674482025], [-171702048482157/3768284913805, -33484579804791160510497687744/13646172315137552384674482025], [216224894174559/4798251817255, 32161436997752309391951872516/22125314902221064429021359025], [216224894174559/4798251817255, -54286751899973373820973231541/22125314902221064429021359025], [-224469985066704/5430609138823, 29147129728648146856189433040/28341346509539838144078141169], [-224469985066704/5430609138823, -57488476238187985000267574209/28341346509539838144078141169], [-372716022187168/1495369134519, 137552443807484521803202447904/2148919823381691095784267921], [-372716022187168/1495369134519, -139701363630866212898986715825/2148919823381691095784267921], [-8554283599467188/206947405821551, 42332476702299599338657185854900/41156966853995201616971059822561], [-8554283599467188/206947405821551, -83489443556294800955628245677461/41156966853995201616971059822561], ... |
4 |
5 |
[X, Y]=[x, 31^3*(2*y+1)] v=[124, 124, 124, 124, -2662510919] |
[0, 0, 0, 106969039512048, 49740604016587920] {O} 38966597780488113216102812923 |
2 |
[66946573806534900530681527416/8171066115067157303401, -27896216851809929265653939724702461430485172/738614938166924046030476880116149] [5462880825601181433995671023036428498284248744004420355712/74660683941777702738053490238764525389640457405081, -407782397441660648724693429389578763854665062104195912468141700405211648466559993195172/645116197217501757001109626207163304972069012227662889882984621601661686979] |
60.0023676539432 129.429448950990 |
[-6991008013365/95391597131, -52016339935183080927231/8744674087878090141345721], [-6991008013365/95391597131, -8692657747942907060418490/8744674087878090141345721], [-623014025771522/1366357932195, 68722447333342499441997728671/1794123572916180565034822025], [-623014025771522/1366357932195, -70516570906258680007032550696/1794123572916180565034822025], [1340930383773706851386939166599260552595177068758652226418954863/7505086388276979870699033003318199583898682950834935396924437, 293379339530980733324650047735083729849207769793651318532967941531823820310919758225747192798793606367149944037678499595222450/54129595149375886570652352742841322506896433448685125831727361313836346647974787001762312199889194382291776142872938944057209], [1340930383773706851386939166599260552595177068758652226418954863/7505086388276979870699033003318199583898682950834935396924437, -347508934680356619895302400477925052356104203242336444364695302845660166958894545227509504998682800749441720180551438539279659/54129595149375886570652352742841322506896433448685125831727361313836346647974787001762312199889194382291776142872938944057209], ... |
5 |
6 |
[X, Y]=[x, 31^3*(2*y+1)] v=[4, 4, 4, 4, -2662511039] |
[0, 0, 0, 3450614307408, 51759214632720] {O} 1207964651353084575823430517163 |
>=1(odd) |
[-15, 135] |
12.2375621183812 |
[42600176633/40, 1814775050014778917149/47665600], [42600176633/40, -1814775050014826582749/47665600], [-77309737716087507412777586750697/72591002000592109997960, 5976795542924169095139581392525511188111104387793322176844864549/156982291347065988230115221747717781740163178225600], [-77309737716087507412777586750697/72591002000592109997960, -5976795542924326077430928458513741303332852105575062340023090149/156982291347065988230115221747717781740163178225600], [5976795540118251921043648367951472605529943619190863938237857489/11223982647792792317109642810124541627275014651815475440, 35722084961917274969563695172035054108461815569690377615276564965134705855309234927232616919842345687025254110145136738220219001/3753004236964718707368512490189244153810519917809853293916755949778641294824281784234791185451506486494987980537600], [5976795540118251921043648367951472605529943619190863938237857489/11223982647792792317109642810124541627275014651815475440, -35722084961921027973800659890742422620952004813844188135194374818428622611259013568527441201626580478210705616631631726200756601/3753004236964718707368512490189244153810519917809853293916755949778641294824281784234791185451506486494987980537600], ... |
6 |
7 |
[X, Y]=[x, 31^4*(2*y+1)] v=[124, 124, 124, 124, -2558673112199] |
[0, 0, 0, 102797250956537328, 47800721695433343120] {O} 34583002517218209722490052387240311163 |
0 | - | - | - | 7 |
8 |
[X, Y]=[x, 31^4*(2*y+1)] v=[4, 4, 4, 4, -2558673112319] |
[0, 0, 0, 3316040353566288, 49740605303515920] {O} 1072073078144732898615303348863449858603 |
>=1(odd) |
[-15, -135] |
15.6715493233939 |
[40938769797113/40, 1675982872501830357840260829/1477633600], [40938769797113/40, -1675982872501830359317894429/1477633600], [-68612677001290140233057566511914588647657/67039314900073214343163105160, 4707699445281069074687543720397407102667861489367449947864138192714702000588220389/4150552486652021029167090426952493977340685292479331518332737600], [-68612677001290140233057566511914588647657/67039314900073214343163105160, -4707699445281069078838096207049428131834951916319943925204823485194033518920957989/4150552486652021029167090426952493977340685292479331518332737600], [4707699445278769203333004466163832276422471245579086138615999775795738003537221329/9199493719250754563985699092055196759374007154001586087220964896307440, 22162434067099685459365872427580247937158661614050116598485231664354820859894343549993287570597521526157502035612871786176449921469652355830579011678155633035884921/78158214556086725050468579069790602188130680543905301671105128967582225010153004853527877035367950670884510360555771293235245875500892190036025600], ... |
8 |
9 |
[X, Y]=[x, 31^5*(2*y+1)] v=[124, 124, 124, 124, -2458884860942279] |
[0, 0, 0, 98788158173217831408, 45936493550546935090320] {O} 30692542037342839654296429769997767031360644603 |
>=1(odd) | ? | ? |
?, ... |
9 |
10 |
[X, Y]=[x, 31^5*(2*y+1)] v=[4,4,4,4,-2458884860942399] |
[0, 0, 0, 3186714779781349968, 47800721696720271120] {O} 951468803157730510928360669623102351817641411243 |
1 | [-15, 135] | 19.1055365278796 |
[39342157775078393/40, 1547805378399162037017049893710109/45806641600], [39342157775078393/40, -1547805378399162037017095700351709/45806641600], [-60894003402094777851252481842259193158901059677417/61912215135966481480682911881236360, 3708079650334328494155840311466360452413702199285246877902644145539701045886734874928026123974894629/109739039505594899773708177181606809939637825138388178348802368426184091889600], [-60894003402094777851252481842259193158901059677417/61912215135966481480682911881236360, -3708079650334328494155950050505866047313475907462428484712583783364839434065083677296452308066784229/109739039505594899773708177181606809939637825138388178348802368426184091889600], ... |
10 |
[6/5*K^2 - 11/8, (2304*K^4 - 4320*K^2 - 800*K + 2525)/(1600*K)], [6/5*K^2 - 11/8, (-2304*K^4 + 4320*K^2 - 800*K - 2525)/(1600*K)], [(-110592*K^6 + 288000*K^4 - 272400*K^2 + 78375)/(92160*K^4 - 172800*K^2 + 101000), (12230590464*K^12 - 68797071360*K^10 - 4246732800*K^9 + 169205760000*K^8 + 15925248000*K^7 - 233625600000*K^6 - 24238080000*K^5 + 191656800000*K^4 + 17452800000*K^3 - 88940100000*K^2 - 5100500000*K + 18270953125)/(8493465600*K^9 - 31850496000*K^7 + 48476160000*K^5 - 34905600000*K^3 + 10201000000*K)], [(-110592*K^6 + 288000*K^4 - 272400*K^2 + 78375)/(92160*K^4 - 172800*K^2 + 101000), (-12230590464*K^12 + 68797071360*K^10 - 4246732800*K^9 - 169205760000*K^8 + 15925248000*K^7 + 233625600000*K^6 - 24238080000*K^5 - 191656800000*K^4 + 17452800000*K^3 + 88940100000*K^2 - 5100500000*K - 18270953125)/(8493465600*K^9 - 31850496000*K^7 + 48476160000*K^5 - 34905600000*K^3 + 10201000000*K)], [(12230590464*K^12 - 73893150720*K^10 + 187785216000*K^8 - 255191040000*K^6 + 193788000000*K^4 - 76667100000*K^2 + 11899640625)/(8847360*K^6 - 24883200*K^4 + 25248000*K^2 - 8690000), (149587343098087735296*K^24 - 1682857609853487022080*K^22 - 51940049686836019200*K^21 + 8872009737132677529600*K^20 + 486937965814087680000*K^19 - 29077635889134305280000*K^18 - 2099356391964672000000*K^17 + 66149011541930803200000*K^16 + 5469128676605952000000*K^15 - 110222829773704396800000*K^14 - 9519129711083520000000*K^13 + 138031364161142784000000*K^12 + 11552167255080960000000*K^11 - 130834599702036480000000*K^10 - 9889354063872000000000*K^9 + 93018924208512000000000*K^8 + 5891392051200000000000*K^7 - 48264342994080000000000*K^6 - 2335315366800000000000*K^5 + 17299901336985000000000*K^4 + 555643596750000000000*K^3 - 3835225216190625000000*K^2 - 60182791882812500000*K + 396670786963134765625)/(103880099373672038400*K^21 - 973875931628175360000*K^19 + 4198712783929344000000*K^17 - 10938257353211904000000*K^15 + 19038259422167040000000*K^13 - 23104334510161920000000*K^11 + 19778708127744000000000*K^9 - 11782784102400000000000*K^7 + 4670630733600000000000*K^5 - 1111287193500000000000*K^3 + 120365583765625000000*K)], [(12230590464*K^12 - 73893150720*K^10 + 187785216000*K^8 - 255191040000*K^6 + 193788000000*K^4 - 76667100000*K^2 + 11899640625)/(8847360*K^6 - 24883200*K^4 + 25248000*K^2 - 8690000), (-149587343098087735296*K^24 + 1682857609853487022080*K^22 - 51940049686836019200*K^21 - 8872009737132677529600*K^20 + 486937965814087680000*K^19 + 29077635889134305280000*K^18 - 2099356391964672000000*K^17 - 66149011541930803200000*K^16 + 5469128676605952000000*K^15 + 110222829773704396800000*K^14 - 9519129711083520000000*K^13 - 138031364161142784000000*K^12 + 11552167255080960000000*K^11 + 130834599702036480000000*K^10 - 9889354063872000000000*K^9 - 93018924208512000000000*K^8 + 5891392051200000000000*K^7 + 48264342994080000000000*K^6 - 2335315366800000000000*K^5 - 17299901336985000000000*K^4 + 555643596750000000000*K^3 + 3835225216190625000000*K^2 - 60182791882812500000*K - 396670786963134765625)/(103880099373672038400*K^21 - 973875931628175360000*K^19 + 4198712783929344000000*K^17 - 10938257353211904000000*K^15 + 19038259422167040000000*K^13 - 23104334510161920000000*K^11 + 19778708127744000000000*K^9 - 11782784102400000000000*K^7 + 4670630733600000000000*K^5 - 1111287193500000000000*K^3 + 120365583765625000000*K)], ...
(18:54) gp > F(x,y,pe)=(x^4+x^3+x^2+x+1)-pe*(y^2+y+1); (18:55) gp > P(e)=[6/5*31^e-11/8, (2304*31^(2*e)-4320*31^e-800*31^(e/2) + 2525)/(1600*31^(e/2))] %14 = (e)->[6/5*31^e-11/8,(2304*31^(2*e)-4320*31^e-800*31^(e/2)+2525)/(1600*31^(e/2))] (18:56) gp > w=P(100) %15 = [6567659380303896768325676289696468083096900161469146002691217340043058362963703623649079133636508984469667127447160035588343380355735036316459133183993/40, 43134149735693765322183982803536001685455993337399767233012212752535059370783632395448834892693703340015860700458272777538758778837819097802759259033735733077747840692322983688529821129941710295745623365318861841269410022570763947146978901601827101089250002073095128143853268484164614770159739611903709/591840491137216093211288196468612379677747663238006844844038032777986086401600] (18:56) gp > F(w[1],w[2],31^100) %16 = 0 (18:56) gp > w2=P(-100) %17 = [-7525443039931548380373170748610536345215198101683396461417019868799337707562577068764569840625166544704826916866537540778310123324279729112609423440007/5473049483586580640271396908080390069247416801224288335576014450035881969136419686374232611363757487058055939539300029656952816963112530263715944320040, 47271583369195641249355276292937675458236277420544449767081526562565549006569176925533873282443018263419355330482567486971218985396049557791415659475765681337628533728777811152108246859644275558661982900495674914073487711843710303386725829326821034160659746607483405709958991006254452825738240054239709/80979307359604219880978172414803461133075758076108831782113750694917925024435092851121007416435290469168802377304865411295235858230572447980382855680004940310370082518513179334496094917700174774456702361976181313254355059201600] (18:56) gp > F(w2[1],w2[2],31^(-100)) %18 = 0
[0, 0, 0] [0, -1, 0] [-1, 0, 0] [-1, -1, 0] [2, 5, 0] [2, -6, 0] [-1, 5, -1] [-1, -6, -1] [0, 5, -1] [0, -6, -1] [83, 38589, -1] [83, -38590,-1] [2, 0, 1] [2, -1, 1]
Last Update: 2024.01.25 |
H.Nakao |