Homeに戻る  一覧に戻る 

Rational Points of Projective Curves: X/Y+Y/Z+Z/X = n (n \in [0..100])


[2005.01.05]X/Y+Y/Z+Z/X=n(n \in [0..100])の有理点



■整数nを固定したとき、射影曲線C'n: X/Y+Y/Z+Z/X=nの有理点[X:Y:Z]を求める。

曲線Cの代わりに、曲線
     Cn: X2Z+Y2X+Z2Y = nXYZ
を考える。
曲線Cnは、自明な有理点[0:0:1],[0:1:0],[1:0:0]を持つ。
曲線Cnの有理点[X:Y:Z]でXYZ!=0を満たすものは、曲線C'nの有理点でもある。
さらに、曲線Cnの有理点[X:Y:Z]でXYZ=0を満たすものは、[0:0:1],[0:1:0],[1:0:0]に限るので、
     C'n(Q) = Cn(Q) - {[0:0:1],[0:1:0],[1:0:0]}
である。

■n=3の場合
X,Y,Zを整数とするとき、
     C'3: X/Y+Y/Z+Z/X = 3
より、
曲線C'3および曲線C3は、自明な有理点[1:1:1]を持つ。

■n > 0, n!=3の場合
射影曲線Cnの有理点[X:Y:Z]を求める。
そのためには、x=X/Z, y=Y/Zとして、Affine曲線
     An: x/y+y+1/x = n
の有理点を求めれば良い。

曲線Anは、双有理変換
     U = -x,
     V = xy
[逆変換は、
     x = -U,
     y = -V/U
]
によって、楕円曲線
     En: V2+nUV+V = U3
に写される。

■n!=3のとき、楕円曲線Enの判別式Δ(En)は、
     Δ(En) = n3-27 = (n-3)(n2+3n+9) != 0
となるので、Enは非特異楕円曲線である。

[pari/gpによる計算]
gp>  en=ec(n)
time = 12 ms.
%1 = [n, 0, 1, 0, 0, n^2, n, 1, 0, n^4 - 24*n, -n^6 + 36*n^3 - 216, n^3 - 27, (n^12 - 72*n^9 + 1728*n^6 - 13824*n^3)/(n^3 - 27), 0, 0, 0, 0, 0, 0]
gp>  en.disc
time = 0 ms.
%2 = n^3 - 27
gp>  factor(en.disc)
time = 54 ms.
%3 = 
[n - 3 1]

[n^2 + 3*n + 9 1]


■楕円曲線Enは、位数3のねじれ点T(0,0)を持つ。

[pari/gpによる計算]
gp>  T=[0,0]
time = 0 ms.
%4 = [0, 0]
gp>  ellpow(en,T,2)
time = 0 ms.
%5 = [0, -1]
gp>  ellpow(en,T,3)
time = 0 ms.
%6 = [0]

■n=0,1,2,4,5,...,100に対して、楕円曲線Enのねじれ点群En(Q)torsを計算すると、
     E5(Q)tors =Z/6Z = {(-2,8), (0,1), (-1/4,1/8), (0,0), (-2,1), O},
     En(Q)tors =Z/3Z if n=0,1,2,4,6,...,100
となる。

[pari/gpによる計算]
gp>  for(n=0,100,if(n!=3,print("E_",n,"_{tors}=",elltors(ec(n),1))))
E_0_{tors}=[3, [3], [[0, 0]]]
E_1_{tors}=[3, [3], [[0, 0]]]
E_2_{tors}=[3, [3], [[0, 0]]]
E_4_{tors}=[3, [3], [[0, 0]]]
E_5_{tors}=[6, [6], [[-2, 8]]]
E_6_{tors}=[3, [3], [[0, 0]]]
E_7_{tors}=[3, [3], [[0, 0]]]
E_8_{tors}=[3, [3], [[0, 0]]]
E_9_{tors}=[3, [3], [[0, 0]]]
E_10_{tors}=[3, [3], [[0, 0]]]
E_11_{tors}=[3, [3], [[0, 0]]]
E_12_{tors}=[3, [3], [[0, 0]]]
E_13_{tors}=[3, [3], [[0, 0]]]
E_14_{tors}=[3, [3], [[0, 0]]]
E_15_{tors}=[3, [3], [[0, 0]]]
E_16_{tors}=[3, [3], [[0, 0]]]
E_17_{tors}=[3, [3], [[0, 0]]]
E_18_{tors}=[3, [3], [[0, 0]]]
E_19_{tors}=[3, [3], [[0, 0]]]
E_20_{tors}=[3, [3], [[0, 0]]]
E_21_{tors}=[3, [3], [[0, 0]]]
E_22_{tors}=[3, [3], [[0, 0]]]
E_23_{tors}=[3, [3], [[0, 0]]]
E_24_{tors}=[3, [3], [[0, 0]]]
E_25_{tors}=[3, [3], [[0, 0]]]
E_26_{tors}=[3, [3], [[0, 0]]]
E_27_{tors}=[3, [3], [[0, 0]]]
E_28_{tors}=[3, [3], [[0, 0]]]
E_29_{tors}=[3, [3], [[0, 0]]]
E_30_{tors}=[3, [3], [[0, 0]]]
E_31_{tors}=[3, [3], [[0, 0]]]
E_32_{tors}=[3, [3], [[0, 0]]]
E_33_{tors}=[3, [3], [[0, 0]]]
E_34_{tors}=[3, [3], [[0, 0]]]
E_35_{tors}=[3, [3], [[0, 0]]]
E_36_{tors}=[3, [3], [[0, 0]]]
E_37_{tors}=[3, [3], [[0, 0]]]
E_38_{tors}=[3, [3], [[0, 0]]]
E_39_{tors}=[3, [3], [[0, 0]]]
E_40_{tors}=[3, [3], [[0, 0]]]
E_41_{tors}=[3, [3], [[0, 0]]]
E_42_{tors}=[3, [3], [[0, 0]]]
E_43_{tors}=[3, [3], [[0, 0]]]
E_44_{tors}=[3, [3], [[0, 0]]]
E_45_{tors}=[3, [3], [[0, 0]]]
E_46_{tors}=[3, [3], [[0, 0]]]
E_47_{tors}=[3, [3], [[0, 0]]]
E_48_{tors}=[3, [3], [[0, 0]]]
E_49_{tors}=[3, [3], [[0, 0]]]
E_50_{tors}=[3, [3], [[0, 0]]]
E_51_{tors}=[3, [3], [[0, 0]]]
E_52_{tors}=[3, [3], [[0, 0]]]
E_53_{tors}=[3, [3], [[0, 0]]]
E_54_{tors}=[3, [3], [[0, 0]]]
E_55_{tors}=[3, [3], [[0, 0]]]
E_56_{tors}=[3, [3], [[0, 0]]]
E_57_{tors}=[3, [3], [[0, 0]]]
E_58_{tors}=[3, [3], [[0, 0]]]
E_59_{tors}=[3, [3], [[0, 0]]]
E_60_{tors}=[3, [3], [[0, 0]]]
E_61_{tors}=[3, [3], [[0, 0]]]
E_62_{tors}=[3, [3], [[0, 0]]]
E_63_{tors}=[3, [3], [[0, 0]]]
E_64_{tors}=[3, [3], [[0, 0]]]
E_65_{tors}=[3, [3], [[0, 0]]]
E_66_{tors}=[3, [3], [[0, 0]]]
E_67_{tors}=[3, [3], [[0, 0]]]
E_68_{tors}=[3, [3], [[0, 0]]]
E_69_{tors}=[3, [3], [[0, 0]]]
E_70_{tors}=[3, [3], [[0, 0]]]
E_71_{tors}=[3, [3], [[0, 0]]]
E_72_{tors}=[3, [3], [[0, 0]]]
E_73_{tors}=[3, [3], [[0, 0]]]
E_74_{tors}=[3, [3], [[0, 0]]]
E_75_{tors}=[3, [3], [[0, 0]]]
E_76_{tors}=[3, [3], [[0, 0]]]
E_77_{tors}=[3, [3], [[0, 0]]]
E_78_{tors}=[3, [3], [[0, 0]]]
E_79_{tors}=[3, [3], [[0, 0]]]
E_80_{tors}=[3, [3], [[0, 0]]]
E_81_{tors}=[3, [3], [[0, 0]]]
E_82_{tors}=[3, [3], [[0, 0]]]
E_83_{tors}=[3, [3], [[0, 0]]]
E_84_{tors}=[3, [3], [[0, 0]]]
E_85_{tors}=[3, [3], [[0, 0]]]
E_86_{tors}=[3, [3], [[0, 0]]]
E_87_{tors}=[3, [3], [[0, 0]]]
E_88_{tors}=[3, [3], [[0, 0]]]
E_89_{tors}=[3, [3], [[0, 0]]]
E_90_{tors}=[3, [3], [[0, 0]]]
E_91_{tors}=[3, [3], [[0, 0]]]
E_92_{tors}=[3, [3], [[0, 0]]]
E_93_{tors}=[3, [3], [[0, 0]]]
E_94_{tors}=[3, [3], [[0, 0]]]
E_95_{tors}=[3, [3], [[0, 0]]]
E_96_{tors}=[3, [3], [[0, 0]]]
E_97_{tors}=[3, [3], [[0, 0]]]
E_98_{tors}=[3, [3], [[0, 0]]]
E_99_{tors}=[3, [3], [[0, 0]]]
E_100_{tors}=[3, [3], [[0, 0]]]
time = 1,150 ms.
gp>  e=ec(5);for(i=2,6,print(i,"[-2,8]=",ellpow(e,[-2,8],i)))
2[-2,8]=[0, -1]
3[-2,8]=[-1/4, 1/8]
4[-2,8]=[0, 0]
5[-2,8]=[-2, 1]
6[-2,8]=[0]
time = 6 ms.

■楕円曲線E6のMordell-Weil群E6(Q)のrankは1であり、その生成元は(-6, 72)である。
     E6(Q) = Z+Z/3Z
[mwrank3による計算]
bash-2.05a$ mwrank3
Program mwrank: uses 2-descent (via 2-isogeny if possible) to
determine the rank of an elliptic curve E over Q, and list a
set of points which generate E(Q) modulo 2E(Q).
and finally search for further points on the curve.
For more details see the file mwrank.doc.
For details of algorithms see the author's book.

Please acknowledge use of this program in published work, 
and send problems to John.Cremona@nottingham.ac.uk.

Version compiled on Feb 11 2003 at 17:40:15 by GCC 3.2.1
using base arithmetic option LiDIA_ALL (LiDIA bigints and multiprecision floating point)
Using LiDIA multiprecision floating point with 15 decimal places.
Enter curve: [6, 0, 1, 0, 0]

Curve [6,0,1,0,0] :     Working with minimal curve [0,0,1,-24,45]
        [u,r,s,t] = [1,-3,-3,9]
No points of order 2
Basic pair: I=1152, J=-78192
disc=1306368
2-adic index bound = 2
By Lemma 5.1(a), 2-adic index = 1
2-adic index = 1
One (I,J) pair
Looking for quartics with I = 1152, J = -78192
Looking for Type 2 quartics:
Trying positive a from 1 up to 11 (square a first...)
(1,0,-18,4,69)  --trivial
Trying positive a from 1 up to 11 (...then non-square a)
Finished looking for Type 2 quartics.
Looking for Type 1 quartics:
Trying positive a from 1 up to 11 (square a first...)
Trying positive a from 1 up to 11 (...then non-square a)
(3,6,-12,-14,21)        --nontrivial...(x:y:z) = (1 : 2 : 1)
Point = [-3 : 9 : 1]
        height = 1.86324355221236
Rank of B=im(eps) increases to 1 (The previous point is on the egg)
Exiting search for Type 1 quartics after finding one which is globally soluble.
Mordell rank contribution from B=im(eps) = 1
Selmer  rank contribution from B=im(eps) = 1
Sha     rank contribution from B=im(eps) = 0
Mordell rank contribution from A=ker(eps) = 0
Selmer  rank contribution from A=ker(eps) = 0
Sha     rank contribution from A=ker(eps) = 0
Rank = 1
Points generating E(Q)/2E(Q):
Point [-6 : 27 : 1], height = 1.86324355221236
After descent, rank of points found is 1
Transferring points back to original curve [6,0,1,0,0]

Generator 1 is [-6 : 27 : 1]; height 1.86324355221236

The rank has been determined unconditionally.
The basis given is for a subgroup of full rank of the Mordell-Weil group
 (modulo torsion), possibly of index greater than 1.
Regulator (of this subgroup) = 1.86324355221236

 (4.4 seconds)

よって、E6(Q)の有理点をいくつか求めると、以下のようになる。
[pari/gpにおる計算]
gp>  rpE([-6,27],6,10)
[-6, 27]
[1092/361, -140608/6859]
[-9584675/10614564, 146780171875/34582249512]
[386803581528/8108318895121, -29699040593262269943/23088527245364893831]
[-53170990338491386458/226537765418859862969, 1274069210009839548900881051368/3409658772817908353401089550547]
[-30738081772957847230689512975/210374216657690893470201900816, -8472649225243298104563809842697587183928411/96491435579663961818932360677510857604035136]
[-1377259259036510395864909512895515013842/6694733770364987932450821031704945314089, 25363677736885619177066591927452262345914680729841690255377/547772173577494249783411012790297759922899578543742309595563]
[-471391465492132899292284053502155365290392852319024/7152743465085223022592660505197272099659951296229729, -286631553684199588067347137538353215551646708752447709691402962406198849536/604935364190002832980816370706426345547827341444938815813187187751984366700433]
[-143007942924230104888508030771281319862869591997762647394940244291/269104638332386792617201605384303837916675946825678113638994802500, 9893338024692361033446469452812108036380148820664839778388966113675309524095131055643945407854577/139598828935790052655133508226706387668420819207903993666861474209568787229125209779197351410125000]
[373774068098231121705360118945601785081757811938220707114413840551296141326475916/302774047830944128617580741518671777487817830790080818448646965634032909844899289, 1149170838427624827043920631411923908654744247440486452756467615724068748539055404044103149822896201769765012245395457851/5268390652640659605597065580053061693591767267119437059709597516028797670684974457324532972428509290510034133190402304413]
time = 47 ms.

■曲線A6の有理点をいくつか計算すると、以下のようになる。
[pari/gpによる計算]
gp>  rpA([-6,27],6,10)
[6, 9/2]
[-1092/361, 2704/399]
[9584675/10614564, 27825625/5919786]
[-386803581528/8108318895121, 9590213595249/355665513944]
[53170990338491386458/226537765418859862969, 117524572543528506724/73821134521513832547]
[30738081772957847230689512975/210374216657690893470201900816, -41560377571055711514162812041/69156542956951756462642586100]
[1377259259036510395864909512895515013842/6694733770364987932450821031704945314089, 863259734523451025096188107541964659809/3835408391397917634802111513355883776438]
[471391465492132899292284053502155365290392852319024/7152743465085223022592660505197272099659951296229729, -43472638373709655638992488122412119323328255068416/6046583306971267026768895583514707948691252992698113]
[143007942924230104888508030771281319862869591997762647394940244291/269104638332386792617201605384303837916675946825678113638994802500, 46085244777980156541936323896560631378516743708855614441109717409/345572999084023473527570882471374701982351146438807662148359563350]
[-373774068098231121705360118945601785081757811938220707114413840551296141326475916/302774047830944128617580741518671777487817830790080818448646965634032909844899289, -109712572363773571003219263717695187294337456118391622125335575531194046894819401/620926638460683832954468995455734807229307121249323432272101362555075832637313172]
time = 22 ms.

■射影曲線C6の有理点をいくつか計算すると、以下のようになる。
[pari/gpによる計算]
gp>  rpC([-6,27],6,10)
[12, 9, 2]
[-22932, 51376, 7581]
[17415354475, 90655886250, 19286662788]
[-48313314547173312, 27308238704821075239, 1012761463276193384]
[260786531732120217365431085802, 1768882504220886840084123089612, 1111094560658606608142550260961]
[4634616260693472690729207646663793441556875, -19062319322092776616289097422144820713455236, 31719733604526868197482346507966751326795600]
[64559574486549980317349907710368345747664977687333438285188, 70633079277185536037357392627802552360212921466330995726803, 313818303038935967800629401307879557072745299086647462868546]
[33701981163120895164867564559185287734535708974701844385093792746728668164656, -3676650288839487655498193975692187238272222190933504323415323407784238463232, 511383092761914606382537209358159430359418185302179236640949683167744591530801]
[95266315755087087632468039211417799209402412087000230736655247847665190391340194047924785352104377, 23906857355163607622704087280211580510085409419566973805111759577975794441899658780869300176842450, 179267017777569988878568869022096177126826475571253573560504269179011099393693639090042834839967500]
[-13337982271442798739450103068878076232624792989913360165569478340606986072481237071691540631689503306619620432701020855856, -1909043046652405208837463331656426224461038789994915286201716526354220587884258693242649641845018093887004316671464378317, 10804374157815520167557367421158099952853295980774664308827029147440354069891253314323805944791861485903131867058801165924]
time = 17 ms.

■楕円曲線Enは、Weiersrass標準形に変換すると、
     Wn: y2=x3+n(n3-24)x-(n6-36n3+216)
となる。


- E~n: Y2Z+nXYZ+YZ2=X3
En: y2+nxy+y=x3
C~n: X2Z+Y2X+Z2X=nXYZ
Cn: x2+y2x+x=nxy
-
n [a1,a2,a3,a4,a6]
j(En) Complex Multiplication.
Conductor of En
En(Q)tors
En(Q)torsの生成元
rank(En(Q))
En(Q)/En(Q)tors
の生成元 [X:Y:Z]
En(Q)/En(Q)tors
の生成元の高さ
Cn(Q)/Cn(Q)torsの生成元
[x,y]
C~nのXYZ!=0である有理点[X:Y:Z]
n
0 [0, 0, 1, 0, 0]
0 CM
27
Z/3Z
[0, 0]
0
-
-
-
-
0
1 [1, 0, 1, 0, 0]
12167/26
26
Z/3Z
[0, 0]
0
- - - - 1
2 [2, 0, 1, 0, 0]
32768/19
19
Z/3Z
[0, 0]
0
- - - - 2
4 [4, 0, 1, 0, 0]
4096000/37
37
Z/3Z
[0, 0]
0
- - - - 4
5 [5, 0, 1, 0, 0]
128787625/98
14
Z/6Z
[-2, 8]
0
- - [2, 4] [2 : 4 : 1] 5
6 [6, 0, 1, 0, 0]
56623104/7
189
Z/3Z
[0, 0]
1
[-6 : 27 : 1] 1.86324355221236 [2/3, 1/3] [12 : 9 : 2],
[-22932 : 51376 : 7581],
...
6
7 [7, 0, 1, 0, 0]
11134383337/316
158
Z/3Z
[0, 0]
0
- - - - 7
8 [8, 0, 1, 0, 0]
59501707264/485
485
Z/3Z
[0, 0]
0
- - - - 8
9 [9, 0, 1, 0, 0]
9460870875/26
702
Z/3Z
[0, 0]
1
[-42 : 27 : 343] 3.36519817683926 [6/49, 9/14] [12 : 63 : 98],
[-638335800 : -53123392 : 17777445],
...
9
10 [10, 0, 1, 0, 0]
929714176000/973
973
Z/3Z
[0, 0]
1
[-630 : 125 : 5832] 5.21928766393872 [35/324, 25/126] [245 : 450 : 2268],
[-30090706370725 : 6262400286324 : 422591962320],
...
10
11 [11, 0, 1, 0, 0]
2971699000633/1304
326
Z/3Z
[0, 0]
0
- - - - 11
12 [12, 0, 1, 0, 0]
35184082944/7
189
Z/3Z
[0, 0]
0
- - - - 12
13 [13, 0, 1, 0, 0]
22542871522249/2170
2170
Z/3Z
[0, 0]
1
[-4446 : 2197 : 54872] 6.64867647335615 [117/1444, 169/342] [1053 : 6422 : 12996],
[-234865047463485075 : -12537292540185000 : 2190306906317504],
...
13
14 [14, 0, 1, 0, 0]
55219290112000/2717
2717
Z/3Z
[0, 0]
1
[-182 : 343 : 2197] 4.65409879672749 [14/169, 49/26] [28 : 637 : 338],
[-870617371932 : -59878044720 : 290616401075],
...
14
15 [15, 0, 1, 0, 0]
4703631568875/124
1674
Z/3Z
[0, 0]
1
[-21 : -27 : 343]
2.96404848608901
[3/49, -9/7]
[3 : -63 : 49],
[-49257360 : -3114475 : 4272996],
...
15
16 [16, 0, 1, 0, 0]
276556108791808/4069
4069
Z/3Z
[0, 0]
1
[-19530 : -29791 : 343000]
7.92257009400211
[279/4900, -961/630]
[2511 : -67270 : 44100],
[-380946217086743162319 : -22900206327454888740 : 44098614540320124400],
...
16
17 [17, 0, 1, 0, 0]
574125551923897/4886
4886
Z/3Z
[0, 0]
1
[-3330 : 50653 : 125]
6.68328781781621
[666/25, 1369/90]
[11988 : 6845 : 450],
[-40553076476562624 : 185379101567815680 : 10605049231387975],
...
17
18 [18, 0, 1, 0, 0]
42318822408192/215
5805
Z/3Z
[0, 0]
1
[-51870 : 74088 : 857375]
8.52086644509181
[546/9025, 1764/1235]
[7098 : 167580 : 117325],
[-13136385704643180763056 : -708152303279636111845 : 1675336576086533112900],
...
18
19 [19, 0, 1, 0, 0]
2190162605289625/6832
854
Z/3Z
[0, 0]
1
[-45 : 729 : 1]
3.23004183713245
[45, 81/5]
[225 : 81 : 5],
[-70835310 : 125043100 : 6361479],
...
19
20 [20, 0, 1, 0, 0]
4059246481408000/7973
7973
Z/3Z
[0, 0]
1
[11102 : -226981 : 2744]
7.47315499418567
[-793/196, 3721/182]
[-10309 : 52094 : 2548],
[3324956249946825 : -28615687589511067500 : 343493942639573488],
...
20
21 [21, 0, 1, 0, 0]
30036162238131/38
1026
Z/3Z
[0, 0]
1
[-546 : 2197 : 9261]
5.68446491391059
[26/441, 169/42]
[52 : 3549 : 882],
[-204424298064688 : -9175430052096 : 254188575369729],
...
21
22 [22, 0, 1, 0, 0]
12768275020644352/10621
10621
Z/3Z
[0, 0]
0
-
-
-
-
22
23 [23, 0, 1, 0, 0]
21785197078214569/12140
6070
Z/3Z
[0, 0]
0
-
-
-
-
23
24 [24, 0, 1, 0, 0]
1345572864000000/511
13797
Z/3Z
[0, 0]
0
-
-
-
-
24
25 [25, 0, 1, 0, 0]
59330408231265625/15598
15598
Z/3Z
[0, 0]
0
-
-
-
-
25
26 [26, 0, 1, 0, 0]
95038565960286208/17549
17549
Z/3Z
[0, 0]
1
[-31122 : 729 : 753571]
8.38204749132797
[342/8281, 81/3458]
[12996 : 7371 : 314678],
[-1131234648498667245276 : 4032353342341807600208 : 152651138416455403179],
...
26
27 [27, 0, 1, 0, 0]
5538750424762491/728
4914
Z/3Z
[0, 0]
0
-
-
-
-
27
28 [28, 0, 1, 0, 0]
231457448663547904/21925
4385
Z/3Z
[0, 0]
0
-
-
-
-
28
29 [29, 0, 1, 0, 0]
352771296212751625/24362
24362
Z/3Z
[0, 0]
1
[-211302 : 79507 : 6028568]
9.58292421536798
[1161/33124, 1849/4914]
[31347 : 336518 : 894348],
[-10723508052595868244497175, -280912592804675578804512, 30630636367358353464320],
...
29
30 [30, 0, 1, 0, 0]
727057727488000/37
333
Z/3Z
[0, 0]
1
[-1302 : 9261 : 8]
6.52292874989936
[651/4, 441/62]
[20181 : 882 : 124],
[-112206942478901907 : -3378371907007940 : 1054449114154800],
...
30
31 [31, 0, 1, 0, 0]
785760664187511433/29764
14882
Z/3Z
[0, 0]
1
[999 : 19683 : 1]
6.58911129107097
[-999, -729/37]
[-36963 : -729 : 37],
[-170269156637569197 : -4662615278982752 : 845751654429696],
...
31
32 [32, 0, 1, 0, 0]
1150390084789338112/32741
32741
Z/3Z
[0, 0]
0
-
-
-
-
32
33 [33, 0, 1, 0, 0]
61650004416144507/1330
35910
Z/3Z
[0, 0]
0
-
-
-
-
33
34 [34, 0, 1, 0, 0]
2382051729092608000/39277
39277
Z/3Z
[0, 0]
0
-
-
-
-
34
35 [35, 0, 1, 0, 0]
3373548958002561625/42848
2678
Z/3Z
[0, 0]
1
[-25802 : -2744 : 912673]
8.26693248505956
[266/9409, -196/1843]
[5054 : -19012 : 178771],
[-2882453702791506201792 : 120749884057512679995 : 2051058421115708200],
...
35
36 [36, 0, 1, 0, 0]
175224917862088704/1727
46629
Z/3Z
[0, 0]
1
[-82446 : -343 : 3442951]
9.4958185664857
[-546/22801, -343/3442951]
[42588 : -7399 : 1778478],
[-201968418124804813767012 : 5165164488128085557256816 : 140605029770118958974601],
...
36
37 [37, 0, 1, 0, 0]
6573599193449797417/50626
50626
Z/3Z
[0, 0]
0
-
-
-
-
37
38 [38, 0, 1, 0, 0]
9053847551343591424/54845
54845
Z/3Z
[0, 0]
1
[-6648530 : 3442951 : 248858189]
12.020789497202
[10570/395641, 22801/44030]
[739900 : 14341829 : 27694870],
[-24191307089413234120791532769860 : -575446038115148794895732852400 : 142672684843106355097237761099],
...
38
39 [39, 0, 1, 0, 0]
50891091741325875/244
3294
Z/3Z
[0, 0]
0
-
-
-
-
39
40 [40, 0, 1, 0, 0]
16758348709003264000/63973
63973
Z/3Z
[0, 0]
1
[-18 : -1 : 729]
3.50387803019488
[2/81, -1/18]
[4 : -9 : 162],
[-793026740 : 134290800 : 2925153],
...
40
41 [41, 0, 1, 0, 0]
22539927008317185433/68894
9842
Z/3Z
[0, 0]
2
[-18 : 8 : 729],
[-52 : -1 : 2197]
2.52633172521242,
3.3525441057128
[2/81, 4/9],
[4/169, -1/52]
[2 : 36 : 81],
[16 : -13 : 676],
[-4456192 : -95481 : 16848],
[-131037224 : 184571712 : 4421547],
...
41
42 [42, 0, 1, 0, 0]
1114822171519451136/2743
74061
Z/3Z
[0, 0]
0
-
-
-
-
42
43 [43, 0, 1, 0, 0]
39923455051419367609/79480
19870
Z/3Z
[0, 0]
0
-
-
-
-
43
44 [44, 0, 1, 0, 0]
52609598542065664000/85157
85157
Z/3Z
[0, 0]
1
[-8620794 : -6859 : 549353259]
13.0656436711572
[10526/670761, -361/453726]
[5831404 : -295659 : 371601594],
[-56858646327611974789652606755868 : 12898210522043372807248531640884080 : 265036790909513294752991014438425],
...
44
45 [45, 0, 1, 0, 0]
3528121515577875/38409197624
91098
Z/3Z
[0, 0]
0
-
-
-
-
45
46 [46, 0, 1, 0, 0]
89695920352082526208/97309
97309
Z/3Z
[0, 0]
0
-
-
-
-
46
47 [47, 0, 1, 0, 0]
116110924339934018377/103796
51898
Z/3Z
[0, 0]
1
[11784370 : 49430863 : 54872]
12.8253952726453
[-310115/1444, -134689/32110]
[-262047175 : -5118182 : 1220180],
[-2046086109041431919671542380351395 : -43181410825694521965707212872600 : 136263394865433627930236251126464],
...
47
48 [48, 0, 1, 0, 0]
615185089044676608/455
12285
Z/3Z
[0, 0]
0
-
-
-
-
48
49 [49, 0, 1, 0, 0]
191464009517634765625/117622
117622
Z/3Z
[0, 0]
0
-
-
-
-
49
50 [50, 0, 1, 0, 0]
244000026998272000000/124973
124973
Z/3Z
[0, 0]
0
-
-
-
-
50
51 [51, 0, 1, 0, 0]
11461530181026313179/4912
16578
Z/3Z
[0, 0]
1
[-9009 : 2197 : 456533]
7.02025001821227
[117/5929, 169/693]
[1053 : 13013 : 53361],
[-2243275712902386864 : -29530862125357824 : 1182973652263403],
...
51
52 [52, 0, 1, 0, 0]
390676887424298156032/140581
20083
Z/3Z
[0, 0]
0
-
-
-
-
52
53 [53, 0, 1, 0, 0]
491021359576074356329/148850
29770
Z/3Z
[0, 0]
1
[-378 : 8 : 19683]
4.89587929720581
[14/729, 4/189]
[98 : 108 : 5103],
[-1648449696320 : 1372537188225 : 25315913016],
...
53
54 [54, 0, 1, 0, 0]
22759502184972288000/5831
3213
Z/3Z
[0, 0]
1
[-4902 : 185193 : 79507]
6.52686445443575
[114/1849, 3249/86]
[228 : 139707 : 3698],
[12653957736678996 : -1037229965097040 : 837704646499674525],
...
54
55 [55, 0, 1, 0, 0]
765886326846200547625/166348
83174
Z/3Z
[0, 0]
0
-
-
-
-
55
56 [56, 0, 1, 0, 0]
950776102895932407808/175589
175589
Z/3Z
[0, 0]
0
-
-
-
-
56
57 [57, 0, 1, 0, 0]
1612879352406519553/254
2286
Z/3Z
[0, 0]
1
[-535990 : 6859 : 29791000]
9.5203204671776
[1729/96100, 361/28210]
[157339 : 111910 : 8745100],
[-1131676941270916016906839 : 2332599827844592505406480 : 40552149808548660729600],
...
57
58 [58, 0, 1, 0, 0]
1448690626360350244864/195085
195085
Z/3Z
[0, 0]
0
-
-
-
-
58
59 [59, 0, 1, 0, 0]
1778573755425712533625/205352
51338
Z/3Z
[0, 0]
0
-
-
-
-
59
60 [60, 0, 1, 0, 0]
80594697129873408000/7999
215973
Z/3Z
[0, 0]
0
-
-
-
-
60
61 [61, 0, 1, 0, 0]
2653507084802971210633/226954
226954
Z/3Z
[0, 0]
0
-
-
-
-
61
62 [62, 0, 1, 0, 0]
3225292190314081288192/238301
238301
Z/3Z
[0, 0]
1
[40031733828176859700 : 7425751661388173177 : 3465573357637000000] 31.8172180358403 [-26453270222809/2290076890000, -3806217608209/20519066234900] [-358683938301411320777 : -5759949106502679700 : 31051502933274170000],
[-1273629053278972952601836776632004876312620716425258151195403710818162226854510041 : -10909606250638533979091592255813224940076547034701444528125363700134106174720200 : 69723113919673001688564402049867584200400637545933585933211441673856852741886440000],
...
62
63 [63, 0, 1, 0, 0]
144743066736914428587/9260
125010
Z/3Z
[0, 0]
1
[-841979775 : -15069223 : 53796109375]
15.1892519946331
[223041/14250625, -61009/3408825]
[201406023 : -230308975 : 12868314375],
[-1101980158349739939800670094824044202573 : 803582288839046199331630434442767604200 : 12481346349015468640078337604660680000],
...
63
64 [64, 0, 1, 0, 0]
4721069564920594432000/262117
262117
Z/3Z
[0, 0]
1
[37206936835389216 : -2395555936653353319 : 12606388811104256]
27.2000676385536
[-159867561681/54166045696, 1790348365521/27807064544]
[-19100816402084199 : 416678517197895456 : 6471704973712384],
[61211285373765049390319819636834724837274520415876068067412756473825 : -46188478370829972727205638440512509466129212544180097347780765976920000 : 4540305168648572046202369088581613341122420396115090415234483213955072],
...
64
65 [65, 0, 1, 0, 0]
5686517935701431349625/274598
274598
Z/3Z
[0, 0]
0
-
-
-
-
65
66 [66, 0, 1, 0, 0]
28106850547771539456/1183
2457
Z/3Z
[0, 0]
1
[-42 : 27 : 2744] 3.02148484430938 [3/196, 9/14] [3 : 126 : 196],
[-83744001 : -1223068 : 496272],
...
66
67 [67, 0, 1, 0, 0]
8180760190464250548697/300736
9398,
Z/3Z
[0, 0]
1
[-200501826525 : 426107828125 : 13006060129413] 18.2605003152228 [8525825/553049289, 56625625/26644761] [9659759725 : 1331664823125 : 626604844437],
[-266591519678342583257282310337923363662512182500 : -3962455345992120254289596724283295081732498553 : 19061926887861811859692254115717071080221320450],
...
67
68 [68, 0, 1, 0, 0]
9772541020024262262784/314405
314405
Z/3Z
[0, 0]
0
-
-
-
-
68
69 [69, 0, 1, 0, 0]
431251020701155348875/12166
328482
Z/3Z
[0, 0]
2
[-2086770 : 857375 : 143055667],
[-4209120084 : -308915776 : 291566137591]
11.5004969249261,
16.5468002675986
[3990/273529, 9025/21966],
[634764/43970161, -456976/6226509]
[167580 : 4720075 : 11488218],
[596043396 : -3030207856 : 41287981179],
[-1101922519374946447569088206600 : -14612009580289724326148287296 : 2279548880977258281393891005],
[-10707623525627279193576947244183812378644800 : 258516616840456308995381666802367240408077 : 2341218304858854830691245607222477120040],
...
69
70 [70, 0, 1, 0, 0]
13838381944588730368000/342973
342973
Z/3Z
[0, 0]
1
[35916205544027676 : -3235087432173707739 : 720933179012189632]
27.9722523067126
[-40055188257/804013502224, 2187378882441/24284459444]
[-1084814663564331 : 1961352647760606588 : 21775097680732592],
[121799476813226920643470110476123365114697412856873305389484949749684825 : -33298984640037213295294205756733973901034364072580348019979875790439432 : 8971927890946521195694692908892610868786114223004266981913691378621469120],
...
70
71 [71, 0, 1, 0, 0]
16406381869941425657833/357884
178942
Z/3Z
[0, 0]
1
[-4221 : -343 : 300763]
7.00080599212095
[63/4489, -49/603]
[567 : -3283 : 40401],
[-1508758040530026468 : 23740833292610499 : 176444473643942],
...
71
72 [72, 0, 1, 0, 0]
718691344305639653376/13823
373221
Z/3Z
[0, 0]
1
[-2233170979144096816838645824261745130 : -66190613452201523594710493648377128 : 161893797242624643092589005555616736375]
57.6327767564283
[409743342155054969101446/29704355902829212213959025, -163630505013938012625444/5520645240184961066499865]
[415041644964831779460409525479517818 : -891814112653815337720642844241437820 : 30088456524244590056771479215071906575],
[-712640306685505711513404686515315869571848021667559909899834491668017573014842589525215367855591436197873174922786196653714329945674433291781689832464 : 142739777739952296146740073284857237403466804743686903685970760583709914611965009833138372276366072629706998302254394725066396515300658319805001278145 : 1853879268738231288466498913910605462574145973468368124697037611654921364241564079538824997871465223658679229170918921325739594603713375486377015100],
...
72
73 [73, 0, 1, 0, 0]
22897809553747428678169/388990
388990
Z/3Z
[0, 0]
1
[-353595022533028017528158088129288913289501886 : 23117249404464522493657965369064303830781099832 : 709753774900024457901176049760084754892759] 70.5744344745250
[353595022533028017528158088129288913289501886, 8115042008118580180018286272324/124125427360012715380568375577]
[5516052940379835723918624062995170304792670702 : 723869051938634952455000067289242669675739356 : 11072099852925046330240381983962055577398063],
[-1894198155590012219577905220467971551040964751962760877263111668570101060744039884169827226981907672830143076719939854599220752686070665823118673697188165540778589817916650012600114944 : 1885005460145888590616316238286896234692534609929587605690274360334604546194199248204650939424438793337100997757002246965784615315145076972943812351010893041220285187110584281132011055 : 25466741554858118078865825794496542625632417256462558846058025817069948636831447335013901482065540339292295706779860748495996527058685516594894773018499295042477630269854752667983600],
...
73
74 [74, 0, 1, 0, 0]
26958980790088192000000/405197
405197
Z/3Z
[0, 0]
1
[-1533052962 : 2352637 : 15662530008]
16.3467527253216
[-612731/6260004, 2352637/15662530008]
[2822851717 : 44257878 : 28839838428],
[8605978477534747892909642301556727262925 : -1273389517979275162877729256284524274644908 : 653665658097386648029041049260609163174320],
...
74
75 [75, 0, 1, 0, 0]
130333112074927171875/1736
11718
Z/3Z
[0, 0]
0
-
-
-
-
75
76 [76, 0, 1, 0, 0]
37127172279817955934208/438949
438949
Z/3Z
[0, 0]
2
[-3405649338 : -18821096 : 266716895453],
[43452025812 : 2336752783 : 10590025536]
16.6837250108808,
18.1515263494189
[529074/41434969, -70756/12803193],
[-19786897/4822416, -1760929/32744556]
[1052328186 : -455456372 : 82414153341],
[-295042421167 : -3867000084 : 71907044976],
[-2830315231578020775080453966169571245984144 : 14222624451858632627056971734217166592340921 : 186489802319179527258842233240393281930052],
[2397096695245561111521038077610547120237034223 : -110337867009245728412234837241310967619528216 : 234257545563384103181819243047148056747309237824],
...
76
77 [77, 0, 1, 0, 0]
43433037960110804986057/456506
456506
Z/3Z
[0, 0]
2
[-1820 : -125 : 140608],
[-74416230 : 300763 : 5479701947]
6.82299026561925,
14.1642464817705
[35/2704, -25/364],
[42210/3108169, 4489/1110690]
[245 : -1300 : 18928]
[26592300 : 7914107 : 1958146470],
[-489294480903538275 : 11001396276057096 : 90564467980480],
[-423808169557836552120208610137177920 : 5246848966633284148439208614829158400 : 67928241038900042808693366607672889],
...
77
78 [78, 0, 1, 0, 0]
1878043184595319652352/17575
94905
Z/3Z
[0, 0]
0
-
-
-
-
78
79 [79, 0, 1, 0, 0]
59082882136811712231625/493012
246506
Z/3Z
[0, 0]
0
-
-
-
-
79
80 [80, 0, 1, 0, 0]
68709813512561754112000/511973
511973
Z/3Z
[0, 0]
0
-
-
-
-
80
81 [81, 0, 1, 0, 0]
2953912472265259937979/19682
531414
Z/3Z
[0, 0]
0
-
-
-
-
81
82 [82, 0, 1, 0, 0]
92407988187986305318912/551341
551341
Z/3Z
[0, 0]
0
-
-
-
-
82
83 [83, 0, 1, 0, 0]
106876548605226922299289/571760
71470
Z/3Z
[0, 0]
1
[-2745 : 729 : 226981]
6.44361275637575
[45/3721, 81/305]
[225 : 4941 : 18605],
[-73683121597934940 : -736735610436475 : 43305828623946],
...
83
84 [84, 0, 1, 0, 0]
169266551564357632000/813
2439
Z/3Z
[0, 0]
1
[-1736 : -29791 : 175616]
6.1650051620243
[31/3136, -961/56]
[31 : -53816 : 3136],
[-8351110054231607 : -96552046023440 : 20783456650028800],
...
84
85 [85, 0, 1, 0, 0]
142225081367745601851625/614098
614098
Z/3Z
[0, 0]
0
-
-
-
-
85
86 [86, 0, 1, 0, 0]
163656120870624462635008/636029
636029
Z/3Z
[0, 0]
1
[-13286 : 389017 : 753571]
8.81221753012714
[146/8281, 5329/182]
[292 : 484939 : 16562],
[-2206361733147699827508 : -18818489819181504816 : 68935750721225520653339],
...
86
87 [87, 0, 1, 0, 0]
6963374954507005432971/24388
329238
Z/3Z
[0, 0]
1
[-105 : -1 : 9261]
4.7685778840597
[5/441, -1/105]
[25 : -21 : 2205],
[-509971485595 : 698072540550 : 7955592372],
...
87
88 [88, 0, 1, 0, 0]
215648370180670166401024/681445
681445
Z/3Z
[0, 0]
0
-
-
-
-
88
89 [89, 0, 1, 0, 0]
246965178762969126657625/704942
704942
Z/3Z
[0, 0]
0
-
-
-
-
89
90 [90, 0, 1, 0, 0]
10459320115707850752000/26999
104139,
Z/3Z
[0, 0]
0
-
-
-
-
90
91 [91, 0, 1, 0, 0]
322444677449263088061433/753544
188386
Z/3Z
[0, 0]
0
-
-
-
-
91
92 [92, 0, 1, 0, 0]
367632393084496287465472/778661
778661
Z/3Z
[0, 0]
1
[-400036576983621759003296362183185265830 : -165129881198178499588183393974421656 : 45351811426345621650009333682925120228141]
61.9223670617847
[11217639776756321041004430/1271734418987779814374290361, -300988876328783192813796/729162759175056300716582905]
[229365321791393105114775911058660762150 : -10733680363511342830998605670315357876 : 26002954279983814794511196680447493149805],
[-810871348608745320622201228470206318778517478510664084143455950437037053573804033039596536416213015372071284668269668347935493018732274603933601521802314633360 : 262128110403140439499122084346855297799637120410450509524471138988947913771909705117197034800108743158055501621674235922864070377342019535800827719565159855270025 : 2747906696729578189131414472633936074724171141794810401804678988981873505678993232700951568590868955424640639102846032452828150960402340062702828790492485823996],
...
92
93 [93, 0, 1, 0, 0]
1722464316869890617363/3310
89370
Z/3Z
[0, 0]
0
-
-
-
-
93
94 [94, 0, 1, 0, 0]
475879060380576415744000/830557
830557
Z/3Z
[0, 0]
2
[-13394430 : 6859 : 415160936],
[-1485894740904 : -16954786009 : 141062761391616]
13.4782119998764,
20.7007807431814
[17955/556516, 361/704970],
[28544159/2709827136, -6599761/578394216]
[16967475 : 269306 : 525907620],
[317154150649 : -343557158616 : 30108889308096],
[26034659496869959614572896876965 : -96897585342531918615476401957643100 : 3228619306935992544774585931458736],
[-209882435221197376289453142125799088765233259623827375 : 173286279283075289006207717392193926618582929599250000 : 1819854383298720142263470884826585156784727427749632],
...
94
95 [95, 0, 1, 0, 0]
540314710975363725663625/857348
428674
Z/3Z
[0, 0]
0
-
-
-
-
95
96 [96, 0, 1, 0, 0]
22691107267950415970304/32767
884709
Z/3Z
[0, 0]
1
[-570 : -27 : 54872]
6.148276990582
[15/1444, -9/190]
[75 : -342 : 7220],
[-7472311147084095 : 280594108713100 : 2288124226416],
...
96
97 [97, 0, 1, 0, 0]
693787625798577879325177/912646
912646
Z/3Z
[0, 0]
0
-
-
-
-
97
98 [98, 0, 1, 0, 0]
784656695426649285689344/941165
941165
Z/3Z
[0, 0]
1
[-2172595783271102109648 : -16760883178134623809 : 215766814762947883615201]
34.8298048464953
[36222969386448/3597408586516801, -6549345970561/848945803606992]
[512706863505907190016 : -392819298910041852961 : 50918411836007412579792],
[-955898053443272349749938541845191963645180785655634772770752100897512269783673321867695520 : 1577184314955067332457129970265317910436740730850317473010202764403304392347953237605145600 : 15992084740547267455922785397430140805608271984639937646362209640007131136582628146947681],
...
98
99 [99, 0, 1, 0, 0]
32826633337080546046875/35936
60642
Z/3Z
[0, 0]
1
[-30500986597751587631601405882 : -1522948218167494056976118297 : 3027275289091016910029485487007]
45.6530758613686
[2108449719651843974/209267254819338486849, -1323701592710869969/26510556338729249514]
[3863949590606453061505454852 : -19148763265440084996194161167 : 383503631151345803905471494102],
[-67607765307375676716985468710233942144878523438740091888397279413800241567872980159309386169549657875410394456715869648 : 2064286540115081434492893300915601256887401988764778415736108675263115016324334678421704774786517445832931127610845440 : 15668044297853133247309213636029057415774670396034519387293166425652007925005810551245112569245676733432463220878575],
...
99
100 [100, 0, 1, 0, 0]
999928001727986176000000/999973
76921
Z/3Z
[0, 0]
0
-
-
-
-
100

[2009.03.15追記]
参考文献[4]によると、整数nがある整数X,Y,Zに対してn=X/Y+Y/Z+Z/Xのように表現できるとき、nをCassels-Sansone number(省略してCS number)と呼ぶ。


[参考文献]


Last Update: 2021.08.09
H.Nakao

Homeに戻る[Homeに戻る]  一覧に戻る[一覧に戻る]