gp> en=ec(n) time = 4 ms. %96 = [0, 0, 0, -27*n^4 - 5832*n, 54*n^6 - 29160*n^3 - 314928, 0, -54*n^4 - 11664*n, 216*n^6 - 116640*n^3 - 1259712, -729*n^8 - 314928*n^5 - 34012224*n^2, 1296*n^4 + 279936*n, -46656*n^6 + 25194240*n^3 + 272097792, 2176782336*n^9 - 176319369216*n^6 + 4760622968832*n^3 - 42845606719488, (n^12 + 648*n^9 + 139968*n^6 + 10077696*n^3)/(n^9 - 81*n^6 + 2187*n^3 - 19683), 0, 0, 0, 0, 0, 0] gp> en.disc time = 0 ms. %97 = 2176782336*n^9 - 176319369216*n^6 + 4760622968832*n^3 - 42845606719488 gp> factor(en.disc) time = 28 ms. %98 = [n - 3 3] [n^2 + 3*n + 9 3] gp> factor(2176782336) time = 0 ms. %99 = [2 12] [3 12]
gp> T(n) time = 0 ms. %100 = [3*n^2 + 36*n + 108, 108*n^2 + 324*n + 972] gp> ellpow(en,T(n),2) time = 0 ms. %101 = [3*n^2 + 36*n + 108, -108*n^2 - 324*n - 972] gp> ellpow(en,T(n),3) time = 0 ms. %102 = [0]
gp> for(n=1,100,if(n!=3,print("E_",n,"_{tors}=",elltors(ec(n),1)))) E_1_{tors}=[3, [3], [[147, 1404]]] E_2_{tors}=[3, [3], [[192, 2052]]] E_4_{tors}=[3, [3], [[300, 3996]]] E_5_{tors}=[6, [6], [[-141, 756]]] E_6_{tors}=[3, [3], [[432, 6804]]] E_7_{tors}=[3, [3], [[507, 8532]]] E_8_{tors}=[3, [3], [[588, 10476]]] E_9_{tors}=[3, [3], [[675, 12636]]] E_10_{tors}=[3, [3], [[768, 15012]]] E_11_{tors}=[3, [3], [[867, 17604]]] E_12_{tors}=[3, [3], [[972, 20412]]] E_13_{tors}=[3, [3], [[1083, 23436]]] E_14_{tors}=[3, [3], [[1200, 26676]]] E_15_{tors}=[3, [3], [[1323, 30132]]] E_16_{tors}=[3, [3], [[1452, 33804]]] E_17_{tors}=[3, [3], [[1587, 37692]]] E_18_{tors}=[3, [3], [[1728, 41796]]] E_19_{tors}=[3, [3], [[1875, 46116]]] E_20_{tors}=[3, [3], [[2028, 50652]]] E_21_{tors}=[3, [3], [[2187, 55404]]] E_22_{tors}=[3, [3], [[2352, 60372]]] E_23_{tors}=[3, [3], [[2523, 65556]]] E_24_{tors}=[3, [3], [[2700, 70956]]] E_25_{tors}=[3, [3], [[2883, 76572]]] E_26_{tors}=[3, [3], [[3072, 82404]]] E_27_{tors}=[3, [3], [[3267, 88452]]] E_28_{tors}=[3, [3], [[3468, 94716]]] E_29_{tors}=[3, [3], [[3675, 101196]]] E_30_{tors}=[3, [3], [[3888, 107892]]] E_31_{tors}=[3, [3], [[4107, 114804]]] E_32_{tors}=[3, [3], [[4332, 121932]]] E_33_{tors}=[3, [3], [[4563, 129276]]] E_34_{tors}=[3, [3], [[4800, 136836]]] E_35_{tors}=[3, [3], [[5043, 144612]]] E_36_{tors}=[3, [3], [[5292, 152604]]] E_37_{tors}=[3, [3], [[5547, 160812]]] E_38_{tors}=[3, [3], [[5808, 169236]]] E_39_{tors}=[3, [3], [[6075, 177876]]] E_40_{tors}=[3, [3], [[6348, 186732]]] E_41_{tors}=[3, [3], [[6627, 195804]]] E_42_{tors}=[3, [3], [[6912, 205092]]] E_43_{tors}=[3, [3], [[7203, 214596]]] E_44_{tors}=[3, [3], [[7500, 224316]]] E_45_{tors}=[3, [3], [[7803, 234252]]] E_46_{tors}=[3, [3], [[8112, 244404]]] E_47_{tors}=[3, [3], [[8427, 254772]]] E_48_{tors}=[3, [3], [[8748, 265356]]] E_49_{tors}=[3, [3], [[9075, 276156]]] E_50_{tors}=[3, [3], [[9408, 287172]]] E_51_{tors}=[3, [3], [[9747, 298404]]] E_52_{tors}=[3, [3], [[10092, 309852]]] E_53_{tors}=[3, [3], [[10443, 321516]]] E_54_{tors}=[3, [3], [[10800, 333396]]] E_55_{tors}=[3, [3], [[11163, 345492]]] E_56_{tors}=[3, [3], [[11532, 357804]]] E_57_{tors}=[3, [3], [[11907, 370332]]] E_58_{tors}=[3, [3], [[12288, 383076]]] E_59_{tors}=[3, [3], [[12675, 396036]]] E_60_{tors}=[3, [3], [[13068, 409212]]] E_61_{tors}=[3, [3], [[13467, 422604]]] E_62_{tors}=[3, [3], [[13872, 436212]]] E_63_{tors}=[3, [3], [[14283, 450036]]] E_64_{tors}=[3, [3], [[14700, 464076]]] E_65_{tors}=[3, [3], [[15123, 478332]]] E_66_{tors}=[3, [3], [[15552, 492804]]] E_67_{tors}=[3, [3], [[15987, 507492]]] E_68_{tors}=[3, [3], [[16428, 522396]]] E_69_{tors}=[3, [3], [[16875, 537516]]] E_70_{tors}=[3, [3], [[17328, 552852]]] E_71_{tors}=[3, [3], [[17787, 568404]]] E_72_{tors}=[3, [3], [[18252, 584172]]] E_73_{tors}=[3, [3], [[18723, 600156]]] E_74_{tors}=[3, [3], [[19200, 616356]]] E_75_{tors}=[3, [3], [[19683, 632772]]] E_76_{tors}=[3, [3], [[20172, 649404]]] E_77_{tors}=[3, [3], [[20667, 666252]]] E_78_{tors}=[3, [3], [[21168, 683316]]] E_79_{tors}=[3, [3], [[21675, 700596]]] E_80_{tors}=[3, [3], [[22188, 718092]]] E_81_{tors}=[3, [3], [[22707, 735804]]] E_82_{tors}=[3, [3], [[23232, 753732]]] E_83_{tors}=[3, [3], [[23763, 771876]]] E_84_{tors}=[3, [3], [[24300, 790236]]] E_85_{tors}=[3, [3], [[24843, 808812]]] E_86_{tors}=[3, [3], [[25392, 827604]]] E_87_{tors}=[3, [3], [[25947, 846612]]] E_88_{tors}=[3, [3], [[26508, 865836]]] E_89_{tors}=[3, [3], [[27075, 885276]]] E_90_{tors}=[3, [3], [[27648, 904932]]] E_91_{tors}=[3, [3], [[28227, 924804]]] E_92_{tors}=[3, [3], [[28812, 944892]]] E_93_{tors}=[3, [3], [[29403, 965196]]] E_94_{tors}=[3, [3], [[30000, 985716]]] E_95_{tors}=[3, [3], [[30603, 1006452]]] E_96_{tors}=[3, [3], [[31212, 1027404]]] E_97_{tors}=[3, [3], [[31827, 1048572]]] E_98_{tors}=[3, [3], [[32448, 1069956]]] E_99_{tors}=[3, [3], [[33075, 1091556]]] E_100_{tors}=[3, [3], [[33708, 1113372]]] time = 2mn, 54,832 ms.
bash-2.05a$ mwrank3 Program mwrank: uses 2-descent (via 2-isogeny if possible) to determine the rank of an elliptic curve E over Q, and list a set of points which generate E(Q) modulo 2E(Q). and finally search for further points on the curve. For more details see the file mwrank.doc. For details of algorithms see the author's book. Please acknowledge use of this program in published work, and send problems to John.Cremona@nottingham.ac.uk. Version compiled on Feb 11 2003 at 17:40:15 by GCC 3.2.1 using base arithmetic option LiDIA_ALL (LiDIA bigints and multiprecision floating point) Using LiDIA multiprecision floating point with 15 decimal places. Enter curve: [0, 0, 0, -69984, -4094064] Curve [0,0,0,-69984,-4094064] : Working with minimal curve [0,0,1,-54,-88] [u,r,s,t] = [6,0,0,108] No points of order 2 Basic pair: I=2592, J=151632 disc=46664771328 2-adic index bound = 2 By Lemma 5.1(a), 2-adic index = 1 2-adic index = 1 One (I,J) pair Looking for quartics with I = 2592, J = 151632 Looking for Type 2 quartics: Trying positive a from 1 up to 6 (square a first...) (1,0,-288,2628,-6696) --trivial (1,0,-240,1988,-4584) --trivial (1,0,-72,252,-216) --trivial (1,-1,-48,32,16) --trivial Trying positive a from 1 up to 6 (...then non-square a) Trying negative a from -1 down to -13 (-3,0,54,84,9) --trivial (-6,-6,36,24,-12) --trivial (-11,-12,36,36,0) --trivial Finished looking for Type 2 quartics. Looking for Type 1 quartics: Trying positive a from 1 up to 19 (square a first...) (1,0,12,28,204) --nontrivial...(x:y:z) = (1 : 1 : 0) Point = [-2 : 3 : 1] height = 0.621081184070788 Rank of B=im(eps) increases to 1 (The previous point is on the egg) Exiting search for Type 1 quartics after finding one which is globally soluble. Mordell rank contribution from B=im(eps) = 1 Selmer rank contribution from B=im(eps) = 1 Sha rank contribution from B=im(eps) = 0 Mordell rank contribution from A=ker(eps) = 0 Selmer rank contribution from A=ker(eps) = 0 Sha rank contribution from A=ker(eps) = 0 Rank = 1 Points generating E(Q)/2E(Q): Point [-72 : 756 : 1], height = 0.621081184070788 After descent, rank of points found is 1 Transferring points back to original curve [0,0,0,-69984,-4094064] Generator 1 is [-72 : 756 : 1]; height 0.621081184070788 The rank has been determined unconditionally. The basis given is for a subgroup of full rank of the Mordell-Weil group (modulo torsion), possibly of index greater than 1. Regulator (of this subgroup) = 0.621081184070788 (2.8 seconds) Enter curve: [0,0,0,0,0] bash-2.05a$
gp> rpE([-72,756],6,10) [-72, 756] [1440, 53676] [-143, 1729] [2030544/5041, 2058290892/357911] [-551647224/2505889, 3182984139636/3966822287] [3494518273/11957764, -26542978919423/41349947912] [-1555752240978840/7570240479649, -26419142596839574241268/20828812647389616143] [18960879673407511152/37366860526179409, -68922457551136410882341289588/7223204598598581696147673] [-3238593975006752614031/27086596717186175625, -225743134292184826056518737255297/140971610929930949467190953125] [117619779875881832108980192512/44420883071343155073512929, -40132271189535597136143092415057942654320148/296060713794572486917377420761020609967] time = 5 ms.
gp> rpC([-72,756],6,10) [2/3, 1/3] [19/21, -52/21] [5275/3258, 1817/3258] [-124904/3096807, -2847511/3096807] [15051171563/4904676969, 10840875082/4904676969] [-203863624933571/458665691607396, -150777667094725/458665691607396] [46875396961726681714/29381282043563909553, 81821352777652044467/29381282043563909553] [-84573893519721693268169777/71494678266896520634735569, 6593378373315887264027696/71494678266896520634735569] [214674741825814609600406026499153/518752964649250744517842481308050, 666161010410184261713443501009747/518752964649250744517842481308050] [-35684611132352443884094017956885819475716/10474376943941514032799536181621296708451, 17400403668620568200751342380492411548517/10474376943941514032799536181621296708451] time = 7 ms.
gp> rpCC([-72,756],6,10) [2, 1, 3] [19, -52, 21] [5275, 1817, 3258] [-124904, -2847511, 3096807] [15051171563, 10840875082, 4904676969] [-203863624933571, -150777667094725, 458665691607396] [46875396961726681714, 81821352777652044467, 29381282043563909553] [-84573893519721693268169777, 6593378373315887264027696, 71494678266896520634735569] [214674741825814609600406026499153, 666161010410184261713443501009747, 518752964649250744517842481308050] [-35684611132352443884094017956885819475716, 17400403668620568200751342380492411548517, 10474376943941514032799536181621296708451] time = 15 ms.
- |
E~n: Y2Z=X3-27(n4+216n)XZ2+54(n6-540n3-5832)Z3 En: y2=x3-27(n4+216n)x+54(n6-540n3-5832) |
C~n: X3+Y3+Z3=nXYZ Cn: x3+y3+1=nxy |
- | ||||
n | [a1,a2,a3,a4,a6] j(En) Complex Multiplication. Conductor of En |
En(Q)tors En(Q)torsの生成元 rank(En(Q)) |
En(Q)/En(Q)tors の生成元 [X:Y:Z] |
En(Q)/En(Q)tors の生成元の高さ |
Cn(Q)/Cn(Q)torsの生成元 [x,y] |
C~nの自明でない有理点[X:Y:Z] |
n |
0 |
[0, 0, 0, 0, -314928] 0 CM 27 |
Z/3Z [108, 972] 0 |
- |
- |
- |
- |
0 |
1 |
[0, 0, 0, -5859, -344034] -10218313/17576 26 |
Z/3Z [147, 1404] 0 |
- |
- |
- |
- |
1 |
2 |
[0, 0, 0, -12096, -544752] -89915392/6859 19 |
Z/3Z [192, 2052] 0 |
- |
- |
- |
- |
2 |
4 |
[0, 0, 0, -30240, -1959984] 1404928000/50653 37 |
Z/3Z [300, 3996] 0 |
- |
- |
- |
- |
4 |
5 |
[0, 0, 0, -46035, -3116178] 4956477625/941192 14 |
Z/6Z [-141, 756] 0 |
- |
- |
- |
[2 : 1 : 1] |
5 |
6 |
[0, 0, 0, -69984, -4094064] 884736/343 189 |
Z/3Z [432, 6804] 1 |
[-72 : 756 : 1] |
0.621081184070788 |
[2/3, 1/3] |
[2 : 1 : 3], [19 : -52 : 21], ... |
6 |
7 |
[0, 0, 0, -105651, -3963762] 59914169497/31554496 158 |
Z/3Z [507, 8532] 0 |
- |
- |
- |
- |
7 |
8 |
[0, 0, 0, -157248, -1089072] 197544116224/114084125 485 |
Z/3Z [588, 10476] 0 |
- |
- |
- |
- |
8 |
9 |
[0, 0, 0, -229635, 7125246] 31255875/17576 702 |
Z/3Z [675, 12636] 1 |
[-378 : 6318 : 1] |
1.12173272561309 |
[7/2, 3/2] |
[7 : 3 : 2], [-1005 : 133 : 632], ... |
9 |
10 |
[0, 0, 0, -328320, 24525072] 1798045696000/921167317 973 |
Z/3Z [768, 15012] 1 |
[-312 : 9828 : 1] |
1.73976255464624 |
[18/7, 5/7] |
[18 : 5 : 7], [-27445 : -3924 : 39949], ... |
10 |
11 |
[0, 0, 0, -459459, 56537406] 4927753743913/2217342464 326 |
Z/3Z [867, 17604] 0 |
- |
- |
- |
- |
11 |
12 |
[0, 0, 0, -629856, 110539728] 884736/343 189 |
Z/3Z [972, 20412] 0 |
- |
- |
- |
- |
12 |
13 |
[0, 0, 0, -846963, 196268238] 30867540216409/10218313000 2170 |
Z/3Z [1083, 23436] 1 |
[246 : 1674 : 1] |
2.21622549111872 |
[13/38, 9/38] |
[13 : 9 : 38], [474075 : -703859 : 55784], ... |
13 |
14 |
[0, 0, 0, -1118880, 326264976] 71163817984000/20057135813 2717 |
Z/3Z [1200, 26676] 1 |
[264 : 7020 : 1] |
1.55136626557583 |
[7/13, 2/13] |
[7 : 2 : 13], [3708 : -15323 : 4355], ... |
14 |
15 |
[0, 0, 0, -1454355, 516363822] 7940149875/1906624 1674 |
Z/3Z [1323, 30132] 1 |
[11367 : 1205280 : 1] |
0.988016162029668 |
[3, -7] |
[3 : -7 : 1], [91 : -516 : 185], ... |
15 |
16 |
[0, 0, 0, -1862784, 786215376] 328394749247488/67369460509 4069 |
Z/3Z [1452, 33804] 1 |
[2532 : 110916 : 1] |
2.6408566980007 |
[9/31, -70/31] |
[9 : -70 : 31], [-2034340 : -3355119 : 10655599], ... |
16 |
17 |
[0, 0, 0, -2354211, 1159850718] 662895180178057/116643458456 4886 |
Z/3Z [1587, 37692] 1 |
[507 : 9828 : 1] |
2.22776260593874 |
[18/37, 5/37] |
[18 : 5 : 37], [224105 : -909504 : 211159], ... |
17 |
18 |
[0, 0, 0, -2939328, 1666284048] 65548320768/9938375 5805 |
Z/3Z [1728, 41796] 1 |
[-1512 : 51516 : 1] |
2.8402888150306 |
[95/13, 42/13] |
[95 : 42 : 13], [-35917476 : 6829645 : 10182731], ... |
18 |
19 |
[0, 0, 0, -3629475, 2340154206] 2429070588015625/318891962368 854 |
Z/3Z [1875, 46116] 1 |
[-1905 : 48384 : 1] |
1.07668061237748 |
[9, 5] |
[9 : 5 : 1], [-910 : 279 : 151], ... |
19 |
20 |
[0, 0, 0, -4436640, 3222405072] 4436814573568000/506833476317 7973 |
Z/3Z [2028, 50652] 1 |
[6852 : 542700 : 1] |
2.49105166472856 |
[14/13, -61/13] |
[14 : -61 : 13], [33367 : -3208492 : 2986425], ... |
20 |
21 |
[0, 0, 0, -5373459, 4361004846] 549353259/54872 1026 |
Z/3Z [2187, 55404] 1 |
[-2430 : 55404 : 1] |
1.8948216379702 |
[21/2, 13/2] |
[21 : 13 : 2], [-120289 : 45969 : 14128], ... |
21 |
22 |
[0, 0, 0, -6453216, 5811704208] 13653289949888512/1198108713061 10621 |
Z/3Z [2352, 60372] 0 |
- |
- |
- |
- |
22 |
23 |
[0, 0, 0, -7689843, 7638833358] 23102614259287129/1789188344000 6070 |
Z/3Z [2523, 65556] 0 |
- |
- |
- |
- |
23 |
24 |
[0, 0, 0, -9097920, 9916137936] 1943764992000/133432831 13797 |
Z/3Z [2700, 70956] 0 |
- |
- |
- |
- |
24 |
25 |
[0, 0, 0, -10692675, 12727653822] 62110897942515625/3794956027192 15598 |
Z/3Z [2883, 76572] 0 |
- |
- |
- |
- |
25 |
26 |
[0, 0, 0, -12489984, 16168620816] 98990690494578688/5404519920149 17549 |
Z/3Z [3072, 82404] 1 |
[1560 : 21924 : 1] |
2.79401583044266 |
[38/91, 9/91] |
[38 : 9 : 91], [6288291 : -28607996 : 4927013], ... |
26 |
27 |
[0, 0, 0, -14506371, 20346435198] 7879411029699/385828352 4914 |
Z/3Z [3267, 88452] 0 |
- |
- |
- |
- |
27 |
28 |
[0, 0, 0, -16759008, 25381641168] 239140774994673664/10539470828125 4385 |
Z/3Z [3468, 94716] 0 |
- |
- |
- |
- |
28 |
29 |
[0, 0, 0, -19265715, 31408961166] 363298915813353625/14459018605928 24362 |
Z/3Z [3675, 101196] 1 |
[-861 : 217620 : 1] |
3.19430807178933 |
[182/43, 27/43] |
[182 : 27 : 43], [-160624647 : -10887968 : 258382055], ... |
29 |
30 |
[0, 0, 0, -22044960, 38578365072] 1404928000/50653 333 |
Z/3Z [3888, 107892] 1 |
[1944 : 55404 : 1] |
2.17430958329979 |
[21/31, 2/31] |
[21 : 2 : 31], [41060 : -625443 : 286843], ... |
30 |
31 |
[0, 0, 0, -25115859, 47056178286] 804920181288528313/26367799495744 14882 |
Z/3Z [4107, 114804] 1 |
[3783 : 78624 : 1] |
2.19637043035699 |
[-1/37, -27/37] |
[-1 : -27 : 37], [-683829 : 35168 : 364117], ... |
31 |
32 |
[0, 0, 0, -28498176, 57026228688] 1175871597441974272/35097470645021 32741 |
Z/3Z [4332, 121932] 0 |
- |
- |
- |
- |
32 |
33 |
[0, 0, 0, -32212323, 68691032478] 86274718447203/2352637000 35910 |
Z/3Z [4563, 129276] 0 |
- |
- |
- |
- |
33 |
34 |
[0, 0, 0, -36279360, 82273018896] 2425981914284032000/60591949546933 39277 |
Z/3Z [4800, 136836] 0 |
- |
- |
- |
- |
34 |
35 |
[0, 0, 0, -40720995, 98015793822] 3430550772360231625/78666832904192 2678 |
Z/3Z [5043, 144612] 1 |
[17094 : 2096874 : 1] |
2.75564416168652 |
[19/14, -97/14] |
[19 : -97 : 14], [399155 : -17392923 : 12873448], ... |
35 |
36 |
[0, 0, 0, -45559584, 116185442256] 244093752999936/5150827583 46629 |
Z/3Z [5292, 152604] 1 |
[107028 : 34946316 : 1] |
3.16527285549523 |
[78/7, -151/7] |
[78 : -151 : 7], [71605559 : -268576932 : 27422521], ... |
36 |
37 |
[0, 0, 0, -50818131, 137071869678] 6667526843286795577/129754026714376 50626 |
Z/3Z [5547, 160812] 0 |
- |
- |
- |
- |
37 |
38 |
[0, 0, 0, -56520288, 160990182288] 9173219929840451584/164972335401125 54845 |
Z/3Z [5808, 169236] 1 |
[-312 : 422604 : 1] |
4.00692983240067 |
[629/151, 70/151] |
[629 : 70 : 151], [-17179066660 : -1949869179 : 37525793539], ... |
38 |
39 |
[0, 0, 0, -62690355, 188282106126] 872352628875/14526784 3294 |
Z/3Z [6075, 177876] 0 |
- |
- |
- |
- |
39 |
40 |
[0, 0, 0, -69353280, 219317445072] 16947659265900544000/261812363948317 63973 |
Z/3Z [6348, 186732] 1 |
[26004 : 3999996 : 1] |
1.16795934339829 |
[2, -9] |
[2 : -9 : 1], [63 : -1460 : 737], ... |
40 |
41 |
[0, 0, 0, -76534659, 254495577726] 22776299351008763113/326997326660984 9842 |
Z/3Z [6627, 195804] 2 |
[-366 : 531468 : 1], [143106 : 17175753 : 8] |
0.842110575070806, 5.38267456228121 |
[9/2, 1/2], [1261/1324, -8305/1324] |
[9 : 1 : 2], [-103 : -9 : 208], [1261 : -8305 : 1324], [-374671346445 : -103607707443227 : 108724253790392], ... |
41 |
42 |
[0, 0, 0, -84260736, 294246993168] 1544163063496704/20638466407 74061 |
Z/3Z [6912, 205092] 0 |
- |
- |
- |
- |
42 |
43 |
[0, 0, 0, -92558403, 339034865598] 40286196399588268969/502080755392000 19870 |
Z/3Z [7203, 214596] 0 |
- |
- |
- |
- |
43 |
44 |
[0, 0, 0, -101455200, 389356667856] 53055650238976000000/617534264364893 85157 |
Z/3Z [7500, 224316] 1 |
[456132 : 307985868 : 1] |
4.35521455705241 |
[554/19, -819/19] |
[554 : -819 : 19], [139250151495 : -304345505372 : 13668309737], ... |
44 |
45 |
[0, 0, 0, -110979315, 445745823822] 3528121515577875/38409197624 91098 |
Z/3Z [7803, 234252] 0 |
- |
- |
- |
- |
45 |
46 |
[0, 0, 0, -121159584, 508773399696] 90361207978275340288/921422957474629 97309 |
Z/3Z [8112, 244404] 0 |
- |
- |
- |
- |
46 |
47 |
[0, 0, 0, -132025491, 579049834158] 116918189447026972537/1118257583702336 51898 |
Z/3Z [8427, 254772] 1 |
[114582 : 38597958 : 1] |
4.27513175754844 |
[367/38, -845/38] |
[367 : -845 : 38], [41722712395 : -221450000899 : 24805715544], ... |
47 |
48 |
[0, 0, 0, -143607168, 657226707408] 10486202499072/94196375 12285 |
Z/3Z [8748, 265356] 0 |
- |
- |
- |
- |
48 |
49 |
[0, 0, 0, -155935395, 743998549086] 192638381914930191625/1627292710925848 117622 |
Z/3Z [9075, 276156] 0 |
- |
- |
- |
- |
49 |
50 |
[0, 0, 0, -169041600, 840104685072] 245408438259712000000/1951859648355317 124973 |
Z/3Z [9408, 287172] 0 |
- |
- |
- |
- |
50 |
51 |
[0, 0, 0, -182957859, 946331123166] 15807770546248611/118515478528 16578 |
Z/3Z [9747, 298404] 1 |
[-945 : 1057536 : 1] |
2.34008333940409 |
[77/13, 9/13] |
[77 : 9 : 13], [-1022256 : -28259 : 1481363], ... |
51 |
52 |
[0, 0, 0, -197716896, 1063512477648] 392681154168544264192/2778304771742941 20083 |
Z/3Z [10092, 309852] 0 |
- |
- |
- |
- |
52 |
53 |
[0, 0, 0, -213352083, 1192533932718] 493400254865849588089/3297968604125000 29770 |
Z/3Z [10443, 321516] 1 |
[-8106 : 1545750 : 1] |
1.63195976573527 |
[27/2, 7/2] |
[27 : 7 : 2], [-27545 : 1809 : 7736], ... |
53 |
54 |
[0, 0, 0, -229897440, 1334333244816] 31363160518656000/198257271191 3213 |
Z/3Z [10800, 333396] 1 |
[7272 : 216972 : 1] |
2.17562148481192 |
[43/57, 2/57] |
[43 : 2 : 57], [30196 : -1137565 : 647349], ... |
54 |
55 |
[0, 0, 0, -247387635, 1489902783822] 769206019037405937625/4603124815936192 83174 |
Z/3Z [11163, 345492] 0 |
- |
- |
- |
- |
55 |
56 |
[0, 0, 0, -265857984, 1660291613136] 954680010127829106688/5413671712861469 175589 |
Z/3Z [11532, 357804] 0 |
- |
- |
- |
- |
56 |
57 |
[0, 0, 0, -285344451, 1846607608638] 3046733141473/16387064 2286 |
Z/3Z [11907, 370332] 1 |
[-10773 : 1915812 : 1] |
3.17344015572587 |
[310/19, 91/19] |
[310 : 91 : 19], [-301150759 : 25720080 : 61301239], ... |
57 |
58 |
[0, 0, 0, -305883648, 2050019616528] 1454043805237928525824/7424575602239125 195085 |
Z/3Z [12288, 383076] 0 |
- |
- |
- |
- |
58 |
59 |
[0, 0, 0, -327512835, 2271759650046] 1784816945524700907625/8659579644574208 51338 |
Z/3Z [12675, 396036] 0 |
- |
- |
- |
- |
59 |
60 |
[0, 0, 0, -350269920, 2513125125072] 110924107886592000/511808023999 215973 |
Z/3Z [13068, 409212] 0 |
- |
- |
- |
- |
60 |
61 |
[0, 0, 0, -374193459, 2775481134606] 2661933994456946757913/11689973438898664 226954 |
Z/3Z [13467, 422604] 0 |
- |
- |
- |
- |
61 |
62 |
[0, 0, 0, -399322656, 3060262762128] 3235046747097049956352/13532486248384901 238301 |
Z/3Z [13872, 436212] 1 |
[295207008 : 330865668 : 24389] |
10.6057393452801 |
[-1513300/13559153, -1950953/13559153] |
[-1513300 : -1950953 : 13559153], [-4870211568810198192408421881 : 3783680645875632107646128200 : 53696663527842631036439081], ... |
62 |
63 |
[0, 0, 0, -425697363, 3368977433838] 199122481017219123/794022776000 125010 |
Z/3Z [14283, 450036] 1 |
[70983 : 18188064 : 1] |
5.06308399821105 |
[903/247, -3775/247] |
[903 : -3775 : 247], [1361350133800 : -24295747136997 : 6734754327197], ... |
63 |
64 |
[0, 0, 0, -453358080, 3703207309776] 4734049434273316864000/18008832805155613 262117 |
Z/3Z [14700, 464076] 1 |
[9401868 : 27634708 : 729] |
9.06668921285121 |
[-119479/1338039, -232736/1338039] |
[-119479 : -232736 : 1338039], [-557929058755015263178688 : 287724826484167926603425 : 14585693435516509581663], ... |
64 |
65 |
[0, 0, 0, -482345955, 4064611713822] 5701440941623536279625/20705804508335192 274598 |
Z/3Z [15123, 478332] 0 |
- |
- |
- |
- |
65 |
66 |
[0, 0, 0, -512702784, 4454929602576] 477185143209984/1655595487 2457 |
Z/3Z [15552, 492804] 1 |
[-9720 : 2918916 : 1] |
1.00716161476979 |
[14, 3] |
[14 : 3 : 1], [-633 : 28 : 209], ... |
66 |
67 |
[0, 0, 0, -544471011, 4875982073118] 8200361403231489782857/27199207925088256 9398 |
Z/3Z [15987, 507492] 1 |
[102692775 : 19649212416 : 15625] |
6.0868334384076 |
[23517/7525, 1133/7525] |
[23517 : 1133 : 7525], [-1781635744669913 : -1248321775926537 : 12232457245758050], ... |
67 |
68 |
[0, 0, 0, -577693728, 5329674909648] 9794937402851586310144/31079092717980125 314405 |
Z/3Z [16428, 522396] 0 |
- |
- |
- |
- |
68 |
69 |
[0, 0, 0, -612414675, 5818001169006] 592862774175421875/1800708590296 328482 |
Z/3Z [16875, 537516] 2 |
[-8010 : 3195234 : 1], [655506 : 179913069 : 8] |
3.83349897497536, 7.71670053496932 |
[523/42, 95/42], [39899/10564, -171639/10564] |
[523 : 95 : 42], [39899 : -171639 : 10564], [-13583250005 : 409659101 : 5972328264], [10699546300421376645 : -201795362835514017437 : 54087597069217597352], ... |
69 |
70 |
[0, 0, 0, -648678240, 6343043805072] 13867452808887881728000/40344078181121317 342973 |
Z/3Z [17328, 552852] 1 |
[11891808 : 233048780 : 729] |
9.32408410223754 |
[-27083/1478979, -896668/1478979] |
[-27083 : -896668 : 1478979], [-2900817190013511716031368 : 107140906212747658498793 : 1066215652126735896969255], ... |
70 |
71 |
[0, 0, 0, -686529459, 6906978332046] 16439410502653824213913/45838125378183104 178942 |
Z/3Z [17787, 568404] 1 |
[47703 : 9094464 : 1] |
2.33360199737365 |
[9/7, -67/7] |
[9 : -67 : 7], [12931 : -1354977 : 1055222], ... |
71 |
72 |
[0, 0, 0, -726014016, 7512075526608] 987762262928523264/2641234272767 373221 |
Z/3Z [18252, 584172] 1 |
[216161657640927 : 52438370353256313 : 3183010111] |
19.2109255854761 |
[146948781537/2163841, 52438370353256313/3183010111] |
[1012930784383 : -5450170263655 : 404512675962], [5303590754033801191379686992642368240934233574145 : -164054257537717072730194582073813857291311314823649 : 65908501603249389002526836257101383457911718154044], ... |
72 |
73 |
[0, 0, 0, -767178243, 8160704168958] 22940218020546596602729/58859329486699000 388990 |
Z/3Z [18723, 600156] 1 |
[21609122578241601 : -2086174727077542444 : 1986595645411] |
23.5248114915084 |
[89200900157319/1391526622949983, 2848691279889518/1391526622949983] |
[89200900157319 : 2848691279889518 : 1391526622949983], [-7673712650750650354751813722970432217978201997755732877297904 : -1821729638774742725058891789517214778903512377711375417028655 : 32167280354413510012002343990846768638051609163245411679829759], ... |
73 |
74 |
[0, 0, 0, -810069120, 8855333822736] 27006912589840777216000/66527110935580373 405197 |
Z/3Z [19200, 616356] 1 |
[-28536 : 2955420 : 1] |
5.44891757510721 |
[4607/133, 2502/133] |
[4607 : 2502 : 133], [-244642267132812 : 72146437148197 : 10921761369155], ... |
74 |
75 |
[0, 0, 0, -854734275, 9598537653822] 2210972014546875/5231776256 11718 |
Z/3Z [19683, 632772] 0 |
- |
- |
- |
- |
75 |
76 |
[0, 0, 0, -901221984, 10392995288016] 37188104186655553650688/84575036112384349 438949 |
Z/3Z [20172, 649404] 2 |
[27732 : 2593836 : 1], [59484 : 12932892 : 1] |
2.24255803721348, 6.05050878313963 |
[2/13, -45/13], [2196/1327, -14911/1327] |
[2 : -45 : 13], [2196 : -14911 : 1327], [-98505 : -186644 : 1184729], [123064550019983 : -7285488014219544 : 4413430505907409], ... |
76 |
77 |
[0, 0, 0, -949581171, 11241495707598] 43501575997031143824217/95134813234802216 456506 |
Z/3Z [20667, 666252] 2 |
[147426 : 198801 : 8], [-23613 : 4527468 : 1] |
2.27433008853975, 4.72141549392351 |
[-5/52, -7/52], [1763/67, 630/67] |
[-5 : -7 : 52], [1763 : 630 : 67], [-985131 : 704755 : 11336], [-3452022745920 : 440302615831 : 350386881449], ... |
77 |
78 |
[0, 0, 0, -999861408, 12146940186768] 2580101749911748608/5428576984375 94905 |
Z/3Z [21168, 683316] 0 |
- |
- |
- |
- |
78 |
79 |
[0, 0, 0, -1052112915, 13112345265966] 59169208895304561573625/119831906976977728 246506 |
Z/3Z [21675, 700596] 0 |
- |
- |
- |
- |
79 |
80 |
[0, 0, 0, -1106386560, 14140845765072] 68806486520675172352000/134196495455724317 511973 |
Z/3Z [22188, 718092] 0 |
- |
- |
- |
- |
80 |
81 |
[0, 0, 0, -1162733859, 15235697835486] 4057498548849160611/7624435282568 531414 |
Z/3Z [22707, 735804] 0 |
- |
- |
- |
- |
81 |
82 |
[0, 0, 0, -1221206976, 16400282051088] 92528716295727693955072/167594927075144821 551341 |
Z/3Z [23232, 753732] 0 |
- |
- |
- |
- |
82 |
83 |
[0, 0, 0, -1281858723, 17638106538078] 107011190791026965866249/186913774347776000 71470 |
Z/3Z [23763, 771876] 1 |
[19983 : 48384 : 1] |
2.14787091879192 |
[9/61, 5/61] |
[9 : 5 : 61], [282815 : -510426 : 9211], ... |
83 |
84 |
[0, 0, 0, -1344742560, 18952810143696] 318891962368000/537367797 2439 |
Z/3Z [24300, 790236] 1 |
[26892 : 1495908 : 1] |
2.05500172067477 |
[1/31, -56/31] |
[1 : -56 : 31], [-185360 : -22823 : 604903], ... |
84 |
85 |
[0, 0, 0, -1409912595, 20348165643822] 142391897712416002821625/231586398515509192 614098 |
Z/3Z [24843, 808812] 0 |
- |
- |
- |
- |
85 |
86 |
[0, 0, 0, -1477423584, 21828082989456] 163841452544882217484288/257294648756652389 636029 |
Z/3Z [25392, 827604] 1 |
[19704 : 605772 : 1] |
2.93740584337571 |
[73/91, 2/91] |
[73 : 2 : 91], [729108 : -55010099 : 35399819], ... |
86 |
87 |
[0, 0, 0, -1547330931, 23396612592078] 9562402861041276819/14505361579072 329238 |
Z/3Z [25947, 846612] 1 |
[134487 : 47410272 : 1] |
1.58952596135323 |
[5, -21] |
[5 : -21 : 1], [1302 : -23155 : 4693], ... |
87 |
88 |
[0, 0, 0, -1619690688, 25057948647888] 215876298821684995293184/316440766588196125 681445 |
Z/3Z [26508, 865836] 0 |
- |
- |
- |
- |
88 |
89 |
[0, 0, 0, -1694559555, 26816432500926] 247217504083446387219625/350316149764664888 704942 |
Z/3Z [27075, 885276] 0 |
- |
- |
- |
- |
89 |
90 |
[0, 0, 0, -1771994880, 28676556045072] 14361665363509248000/19680813080999 104139 |
Z/3Z [27648, 904932] 0 |
- |
- |
- |
- |
90 |
91 |
[0, 0, 0, -1852054659, 30642965164926] 322752865415206614683113/427883804368413184 188386 |
Z/3Z [28227, 924804] 0 |
- |
- |
- |
- |
91 |
92 |
[0, 0, 0, -1934797536, 32720463215568] 367972433096436139589632/472112250234418781 778661 |
Z/3Z [28812, 944892] 1 |
[76139824482838284 : -1446282127025483796 : 2781210948047] |
20.6407890205949 |
[-20446843218005/35661385544981, -548624531286/35661385544981] |
[-20446843218005 : -548624531286 : 35661385544981], [29570913061065806338271638543465089110883785414630076 : -927304754271808106563036706213981027673433469999994985 : 304837663357987553057411465416672141266939247168964089], ... |
92 |
93 |
[0, 0, 0, -2020282803, 34914014541198] 29196203893939467/36264691000 89370 |
Z/3Z [29403, 965196] 0 |
- |
- |
- |
- |
93 |
94 |
[0, 0, 0, -2108570400, 37228748032656] 476291712014161408000000/572938924592818693 830557 |
Z/3Z [30000, 985716] 1 |
[22305 : 1137591 : 1], [136272 : 47754252 : 1] |
4.49273733329212, 6.90026024772712 |
[945/746, 19/746], [11111/2569, -52056/2569] |
[945 : 19 : 746], [11111 : -52056 : 2569], [-8146206091 : -392320602765 : 629550717436], [70522666866122832 : -1567536726449591375 : 365914133782922543], ... |
94 |
95 |
[0, 0, 0, -2199720915, 39669960723822] 540768592178120621373625/630189869156528192 428674 |
Z/3Z [30603, 1006452] 0 |
- |
- |
- |
- |
95 |
96 |
[0, 0, 0, -2293795584, 42243121426896] 31151685664229031936/35181150961663 884709 |
Z/3Z [31212, 1027404] 1 |
[85572 : 21738564 : 1] |
2.04942566352733 |
[5/3, -38/3] |
[5 : -38 : 3], [3724 : -274495 : 164991], ... |
96 |
97 |
[0, 0, 0, -2390856291, 44953874406558] 694335107320069385499337/760163589918162136 912646 |
Z/3Z [31827, 1048572] 0 |
- |
- |
- |
- |
97 |
98 |
[0, 0, 0, -2490965568, 47808043093008] 785257116283731782139904/833676010955667125 941165 |
Z/3Z [32448, 1069956] 1 |
[3505966464 : 23792987196 : 117649] |
11.6099349488318 |
[-2559169/59978401, -14154192/59978401] |
[-2559169 : -14154192 : 59978401], [-3054242160141791718350449429920 : 559440694955858975865297275041 : 169073488605624583423710715679], ... |
98 |
99 |
[0, 0, 0, -2594186595, 50811633833886] 45063098241089803875/46407610105856 60642 |
Z/3Z [33075, 1091556] 1 |
[11533302848898 : -2130798476829492 : 184220009] |
15.2176919537895 |
[-14466072543/1832602198, 1150522313/1832602198] |
[-14466072543 : 1150522313 : 1832602198], [-3490028850205447028882735266461990051887 : -67002789957082521176183340772951815585 : 5550582306991336944516169719922718858192], ... |
99 |
100 |
[0, 0, 0, -2700583200, 53970839685072] 1000648139978077696000000/999919002186980317 76921 |
Z/3Z [33708, 1113372] 0 |
- |
- |
- |
- |
100 |
Last Update: 2020.06.21 |
H.Nakao |