Homeに戻る  一覧に戻る 

Rational Points of Projective Curves: X^3+Y^3+Z^3 = nXYZ (n \in [-100..-1])


[2004.12.05]X^3+Y^3+Z^3=nXYZ(n \in [-100..-1])の有理点



■整数n(n!=3)を固定したとき、射影曲線Cn: X3+Y3+Z3=nXYZは、楕円曲線
     En: Y2 = X3-27(n4+216n)X+54(n6-540n3-5832)
Q-isomorphicである。
よって、射影曲線Cnの有理点[X:Y;Z]を求めることは、楕円曲線Enの有理点を求めることに帰着できる。

■n=-1,-2,...,-100に対して、楕円曲線Enのねじれ点群En(Q)torsを計算すると、
     E-1(Q)tors =Z/6Z,
     En(Q)tors =Z/3Z if n=-1,-2,...,-100
となる。

[pari/gpによる計算]
gp> forstep(n=-1,-100,-1,print("E_{",n,"}_{tors}=",elltors(ec(n),1)))
E_{-1}_{tors}=[6, [6], [[327, 6048]]]
E_{-2}_{tors}=[3, [3], [[48, 756]]]
E_{-3}_{tors}=[3, [3], [[27, 972]]]
E_{-4}_{tors}=[3, [3], [[12, 1404]]]
E_{-5}_{tors}=[3, [3], [[3, 2052]]]
E_{-6}_{tors}=[3, [3], [[0, 2916]]]
E_{-7}_{tors}=[3, [3], [[3, 3996]]]
E_{-8}_{tors}=[3, [3], [[12, 5292]]]
E_{-9}_{tors}=[3, [3], [[27, 6804]]]
E_{-10}_{tors}=[3, [3], [[48, 8532]]]
E_{-11}_{tors}=[3, [3], [[75, 10476]]]
E_{-12}_{tors}=[3, [3], [[108, 12636]]]
E_{-13}_{tors}=[3, [3], [[147, 15012]]]
E_{-14}_{tors}=[3, [3], [[192, 17604]]]
E_{-15}_{tors}=[3, [3], [[243, 20412]]]
E_{-16}_{tors}=[3, [3], [[300, 23436]]]
E_{-17}_{tors}=[3, [3], [[363, 26676]]]
E_{-18}_{tors}=[3, [3], [[432, 30132]]]
E_{-19}_{tors}=[3, [3], [[507, 33804]]]
E_{-20}_{tors}=[3, [3], [[588, 37692]]]
E_{-21}_{tors}=[3, [3], [[675, 41796]]]
E_{-22}_{tors}=[3, [3], [[768, 46116]]]
E_{-23}_{tors}=[3, [3], [[867, 50652]]]
E_{-24}_{tors}=[3, [3], [[972, 55404]]]
E_{-25}_{tors}=[3, [3], [[1083, 60372]]]
E_{-26}_{tors}=[3, [3], [[1200, 65556]]]
E_{-27}_{tors}=[3, [3], [[1323, 70956]]]
E_{-28}_{tors}=[3, [3], [[1452, 76572]]]
E_{-29}_{tors}=[3, [3], [[1587, 82404]]]
E_{-30}_{tors}=[3, [3], [[1728, 88452]]]
E_{-31}_{tors}=[3, [3], [[1875, 94716]]]
E_{-32}_{tors}=[3, [3], [[2028, 101196]]]
E_{-33}_{tors}=[3, [3], [[2187, 107892]]]
E_{-34}_{tors}=[3, [3], [[2352, 114804]]]
E_{-35}_{tors}=[3, [3], [[2523, 121932]]]
E_{-36}_{tors}=[3, [3], [[2700, 129276]]]
E_{-37}_{tors}=[3, [3], [[2883, 136836]]]
E_{-38}_{tors}=[3, [3], [[3072, 144612]]]
E_{-39}_{tors}=[3, [3], [[3267, 152604]]]
E_{-40}_{tors}=[3, [3], [[3468, 160812]]]
E_{-41}_{tors}=[3, [3], [[3675, 169236]]]
E_{-42}_{tors}=[3, [3], [[3888, 177876]]]
E_{-43}_{tors}=[3, [3], [[4107, 186732]]]
E_{-44}_{tors}=[3, [3], [[4332, 195804]]]
E_{-45}_{tors}=[3, [3], [[4563, 205092]]]
E_{-46}_{tors}=[3, [3], [[4800, 214596]]]
E_{-47}_{tors}=[3, [3], [[5043, 224316]]]
E_{-48}_{tors}=[3, [3], [[5292, 234252]]]
E_{-49}_{tors}=[3, [3], [[5547, 244404]]]
E_{-50}_{tors}=[3, [3], [[5808, 254772]]]
E_{-51}_{tors}=[3, [3], [[6075, 265356]]]
E_{-52}_{tors}=[3, [3], [[6348, 276156]]]
E_{-53}_{tors}=[3, [3], [[6627, 287172]]]
E_{-54}_{tors}=[3, [3], [[6912, 298404]]]
E_{-55}_{tors}=[3, [3], [[7203, 309852]]]
E_{-56}_{tors}=[3, [3], [[7500, 321516]]]
E_{-57}_{tors}=[3, [3], [[7803, 333396]]]
E_{-58}_{tors}=[3, [3], [[8112, 345492]]]
E_{-59}_{tors}=[3, [3], [[8427, 357804]]]
E_{-60}_{tors}=[3, [3], [[8748, 370332]]]
E_{-61}_{tors}=[3, [3], [[9075, 383076]]]
E_{-62}_{tors}=[3, [3], [[9408, 396036]]]
E_{-63}_{tors}=[3, [3], [[9747, 409212]]]
E_{-64}_{tors}=[3, [3], [[10092, 422604]]]
E_{-65}_{tors}=[3, [3], [[10443, 436212]]]
E_{-66}_{tors}=[3, [3], [[10800, 450036]]]
E_{-67}_{tors}=[3, [3], [[11163, 464076]]]
E_{-68}_{tors}=[3, [3], [[11532, 478332]]]
E_{-69}_{tors}=[3, [3], [[11907, 492804]]]
E_{-70}_{tors}=[3, [3], [[12288, 507492]]]
E_{-71}_{tors}=[3, [3], [[12675, 522396]]]
E_{-72}_{tors}=[3, [3], [[13068, 537516]]]
E_{-73}_{tors}=[3, [3], [[13467, 552852]]]
E_{-74}_{tors}=[3, [3], [[13872, 568404]]]
E_{-75}_{tors}=[3, [3], [[14283, 584172]]]
E_{-76}_{tors}=[3, [3], [[14700, 600156]]]
E_{-77}_{tors}=[3, [3], [[15123, 616356]]]
E_{-78}_{tors}=[3, [3], [[15552, 632772]]]
E_{-79}_{tors}=[3, [3], [[15987, 649404]]]
E_{-80}_{tors}=[3, [3], [[16428, 666252]]]
E_{-81}_{tors}=[3, [3], [[16875, 683316]]]
E_{-82}_{tors}=[3, [3], [[17328, 700596]]]
E_{-83}_{tors}=[3, [3], [[17787, 718092]]]
E_{-84}_{tors}=[3, [3], [[18252, 735804]]]
E_{-85}_{tors}=[3, [3], [[18723, 753732]]]
E_{-86}_{tors}=[3, [3], [[19200, 771876]]]
E_{-87}_{tors}=[3, [3], [[19683, 790236]]]
E_{-88}_{tors}=[3, [3], [[20172, 808812]]]
E_{-89}_{tors}=[3, [3], [[20667, 827604]]]
E_{-90}_{tors}=[3, [3], [[21168, 846612]]]
E_{-91}_{tors}=[3, [3], [[21675, 865836]]]
E_{-92}_{tors}=[3, [3], [[22188, 885276]]]
E_{-93}_{tors}=[3, [3], [[22707, 904932]]]
E_{-94}_{tors}=[3, [3], [[23232, 924804]]]
E_{-95}_{tors}=[3, [3], [[23763, 944892]]]
E_{-96}_{tors}=[3, [3], [[24300, 965196]]]
E_{-97}_{tors}=[3, [3], [[24843, 985716]]]
E_{-98}_{tors}=[3, [3], [[25392, 1006452]]]
E_{-99}_{tors}=[3, [3], [[25947, 1027404]]]
E_{-100}_{tors}=[3, [3], [[26508, 1048572]]]
time = 2mn, 58,252 ms.

■楕円曲線E-4のMordell-Weil群E-6(Q)のrankは1であり、その生成元は(948, 29484)である。
     E-4(Q) = Z+Z/3Z
[mwrank3による計算]
bash-2.05a$ mwrank3
Program mwrank: uses 2-descent (via 2-isogeny if possible) to
determine the rank of an elliptic curve E over Q, and list a
set of points which generate E(Q) modulo 2E(Q).
and finally search for further points on the curve.
For more details see the file mwrank.doc.
For details of algorithms see the author's book.

Please acknowledge use of this program in published work, 
and send problems to John.Cremona@nottingham.ac.uk.

Version compiled on Feb 11 2003 at 17:40:15 by GCC 3.2.1
using base arithmetic option LiDIA_ALL (LiDIA bigints and multiprecision floating point)
Using LiDIA multiprecision floating point with 15 decimal places.
Enter curve: [0, 0, 0, 16416, 1772496]

Curve [0,0,0,16416,1772496] :   Working with minimal curve [0,1,1,13,42]
        [u,r,s,t] = [6,12,0,108]
No points of order 2
Basic pair: I=-608, J=-65648
disc=-5208682752
2-adic index bound = 2
By Lemma 5.1(a), 2-adic index = 1
2-adic index = 1
One (I,J) pair
Looking for quartics with I = -608, J = -65648
Looking for Type 3 quartics:
Trying positive a from 1 up to 12 (square a first...)
(1,0,-158,1092,-2131)   --nontrivial...(x:y:z) = (1 : 1 : 0)
Point = [26 : 136 : 1]
        height = 0.353081695469717
Rank of B=im(eps) increases to 1
(1,0,-74,364,-507)      --trivial
(1,0,-2,52,-51) --trivial
(1,-1,13,5,-66) --trivial
Trying positive a from 1 up to 12 (...then non-square a)
Trying negative a from -1 down to -10
(-3,-4,22,56,49)        --trivial
Finished looking for Type 3 quartics.
Mordell rank contribution from B=im(eps) = 1
Selmer  rank contribution from B=im(eps) = 1
Sha     rank contribution from B=im(eps) = 0
Mordell rank contribution from A=ker(eps) = 0
Selmer  rank contribution from A=ker(eps) = 0
Sha     rank contribution from A=ker(eps) = 0
Rank = 1
Points generating E(Q)/2E(Q):
Point [948 : 29484 : 1], height = 0.353081695469717
After descent, rank of points found is 1
Transferring points back to original curve [0,0,0,16416,1772496]

Generator 1 is [948 : 29484 : 1]; height 0.353081695469717

The rank has been determined unconditionally.
The basis given is for a subgroup of full rank of the Mordell-Weil group
 (modulo torsion), possibly of index greater than 1.
Regulator (of this subgroup) = 0.353081695469717

 (3 seconds)
Enter curve: [0,0,0,0,0]

bash-2.05a$ 

よって、E-4(Q)の有理点をいくつか求めると、以下のようになる。
[pari/gpにおる計算]
gp>  read("de15.gp")
time = 10 ms.
gp>  rpE([948, 29484],-4,10)
[948, 29484]
[220, 4004]
[57, 1701]
[-3956/121, 1458548/1331]
[-2055804/26569, 855655164/4330747]
[-96767/1764, -62290943/74088]
[2499086820/117787609, -1865839213677348/1278348920477]
[282774610732/1942781929, -230498118954737452/85631999084533]
[20019951125049/38933209225, -92880196223625290907/7682106178230875]
[172821720838216252/22376901758929, -71855179206070433760879292/105852210749178196967]
time = 15 ms.

■m < 0のとき、[-m:1:-1]はC-m2の自明でない有理点である。
よって、E-m2(Q)torsZ/3Zに同型であるならば、rank(E-m2(Q)) >= 1となる。

■射影曲線C-4の有理点をいくつか計算すると、以下のようになる。
[pari/gpによる計算]
gp>  rpCC([948, 29484],-4,10)
[2, -1, 1]
[7, -4, 9]
[31, -95, 134]
[-1544, -5551, 3663]
[-502111, -589174, 264223]
[-225749735, -101167849, 118880244]
[-179042138354, 10807191487, 193411019969]
[-293255735344481, 339980855190512, 613059833705121]
[-2124787285654006081, 4755227249429348801, 3370973297269526290]
[-85451648778129165330452, 111952689700086312034601, 20590283114024812857639]
time = 15 ms.



- E~n: Y2Z=X3-27(n4+216n)XZ2+54(n6-540n3-5832)Z3
En: y2=x3-27(n4+216n)x+54(n6-540n3-5832)
C~n: X3+Y3+Z3=nXYZ
Cn: x3+y3+1=nxy
-
n [a1,a2,a3,a4,a6]
j(En) Complex Multiplication.
Conductor of En
En(Q)tors
En(Q)torsの生成元
rank(En(Q))
En(Q)/En(Q)tors
の生成元 [X:Y:Z]
En(Q)/En(Q)tors
の生成元の高さ
Cn(Q)/Cn(Q)torsの生成元
[x,y]
C~nの自明でない有理点[X:Y:Z]
n
-1 [0, 0, 0, 5805, -285714]
9938375/21952
14
Z/6Z
[327, 6048]
0
-
-
-
{1 : -1 : 1]
-1
-2 [0, 0, 0, 11232, -78192]
71991296/42875
35
Z/3Z
[48, 756]
0
-
-
-
-
-2
-3 [0, 0, 0, 15309, 511758]
9261/8
54
Z/3Z
[27, 972]
0
-
-
-
-
-3
-4 [0, 0, 0, 16416, 1772496]
224755712/753571
91
Z/3Z
[12, 1404]
1
[948 : 29484 : 1]
0.353081695469717
[2, -1]
[2 : -1 : 1],
[7 : -4 : 9],
...
-4
-5 [0, 0, 0, 12285, 4173822]
94196375/3511808
38
Z/3Z
[3, 2052]
0
-
-
-
-
-5
-6 [0, 0, 0, 0, 8503056]
0 CM
27
Z/3Z
[0, 2916]
0
-
-
-
-
-6
-7 [0, 0, 0, -24003, 16039998]
-702595369/50653000
370
Z/3Z
[3, 3996]
0
-
-
-
-
-7
-8 [0, 0, 0, -63936, 28770768]
-13278380032/156590819
77
Z/3Z
[12, 5292]
0
-
-
-
-
-8
-9 [0, 0, 0, -124659, 49640526]
-5000211/21952
378
Z/3Z
[27, 6804]
1
[2295 : 108864 : 1]
0.434324480842125
[3, -1]
[3 : -1 : 1],
[13 : -3 : 14],
...
-9
-10 [0, 0, 0, -211680, 82845072]
-481890304000/1083206683
1027
Z/3Z
[48, 8532]
1
[11424 : 1220076 : 1]
1.15562831469272
[7, -4]
[7 : -4 : 1],
[1368 : -455 : 407],
...
-10
-11 [0, 0, 0, -331155, 134161326]
-1845026709625/2504374712
1358
Z/3Z
[75, 10476]
1
[-4638 : 91665 : 8]
1.79278863984299
[-9/4, -19/4]
[-9 : -19 : 4],
[-15067 : 62307 : 24520],
...
-11
-12 [0, 0, 0, -489888, 211316688]
-303464448/274625
1755
Z/3Z
[108, 12636]
1
[756 : 16524 : 1]
1.87449816598861
[14/19, -3/19]
[14 : -3 : 19],
[-12345 : -96404 : 52649],
...
-12
-13 [0, 0, 0, -695331, 324397278]
-17079827632777/11000295424
278
Z/3Z
[147, 15012]
0
-
-
-
-
-13
-14 [0, 0, 0, -955584, 486295056]
-44331794956288/21276960011
2771
Z/3Z
[192, 17604]
0
-
-
-
-
-14
-15 [0, 0, 0, -1279395, 713193822]
-7414875/2744
378
Z/3Z
[243, 20412]
0
-
-
-
-
-15
-16 [0, 0, 0, -1676160, 1025094096]
-239251750912000/70087408867
4123
Z/3Z
[300, 23436]
2
[47172 : 10241532 : 1],
[2820 : 136836 : 1]
1.63547900888261,
3.15654396930521
[14, -9],
[155/61, -26/61]
[14 : -9 : 1],
[155 : -26 : 61],
[24687 : -10220 : 3473],
[90919244 : -37906335 : 228228511],
...
-16
-17 [0, 0, 0, -2155923, 1446376878]
-509106268797049/120553784000
2470
Z/3Z
[363, 26676]
1
[1767 : 56160 : 1]
1.27323939104852
[9/7, -1/7]
[9 : -1 : 7],
[193 : -1548 : 2555],
...
-17
-18 [0, 0, 0, -2729376, 2006406288]
-52481654784/10218313
5859
Z/3Z
[432, 30132]
0
-
-
-
-
-18
-19 [0, 0, 0, -3407859, 2740171086]
-2010729085860313/326513434456
6886
Z/3Z
[507, 33804]
0
-
-
-
-
-19
-20 [0, 0, 0, -4203360, 3688965072]
-3773101330432000/517201515683
8027
Z/3Z
[588, 37692]
0
-
-
-
-
-20
-21 [0, 0, 0, -5128515, 4901106366]
-348170767875/40707584
2322
Z/3Z
[675, 41796]
1
[1062 : 25542 : 1]
2.71665563526702
[7/78, -37/78]
[7 : -37 : 78],
[-17545733 : -3676435 : 3977688],
...
-21
-22 [0, 0, 0, -6196608, 6432695568]
-12088454429016064/1216476296875
2135
Z/3Z
[768, 46116]
1
[-2256 : 94500 : 1]
0.997406938542393
[-4, -9]
[-4 : -9 : 1],
[-117 : 584 : 133],
...
-22
-23 [0, 0, 0, -7421571, 8348412798]
-20768075179376617/1813170197384
12194
Z/3Z
[867, 50652]
0
-
-
-
-
-23
-24 [0, 0, 0, -8817984, 10722353616]
-89915392/6859
171
Z/3Z
[972, 55404]
1
[13284 : 1495908 : 1]
0.677900606477085
[7, -2]
[7 : -2 : 1],
[76 : -7 : 39],
...
-24
-25 [0, 0, 0, -10401075, 13638903822]
-57166735358265625/3834506847808
7826
Z/3Z
[1083, 60372]
2
[6114 : 422604 : 1],
[28983 : 4904928 : 1]
1.04243708245802,
4.36759555307128
[7/2, -1/2],
[1147/103, -475/103]
[7 : -1 : 2],
[335 : -63 : 688].
[1147 : -475 : 103],
[358128814050 : -62089749247 : 83233032997],
...
-25
-26 [0, 0, 0, -12186720, 17193653136]
-91953699475456000/5454564315227
17603
Z/3Z
[1200, 65556]
0
-
-
-
-
-26
-27 [0, 0, 0, -14191443, 21494347758]
-7377293920563/389017000
19710
Z/3Z
[1323, 70956]
1
[-24894 : 1507815 : 8]
3.53034289631994
[-109/28, -279/28]
[-109 : -279 : 28],
[-367437699 : 2369615419 : 571833080],
...
-27
-28 [0, 0, 0, -16432416, 26661881808]
-225430653627891712/10617537096739
21979
Z/3Z
[1452, 76572]
1
[9777 : 894753 : 1]
4.72452250002624
[1813/362, -325/362]
[1813 : -325 : 362],
[1921346982425 : -148241854089 : 2169684257764],
...
-28
-29 [0, 0, 0, -18927459, 32831327646]
-344497163058771913/14555380023296
1526
Z/3Z
[1587, 82404]
1
[4530 : 200124 : 1]
3.07837233325186
[127/74, -9/74]
[127 : -9 : 74],
[14788431 : -51556031 : 151634288],
...
-29
-30 [0, 0, 0, -21695040, 40153005072]
-26357170176000/1003003001
27027
Z/3Z
[1728, 88452]
0
-
-
-
-
-30
-31 [0, 0, 0, -24754275, 48793589406]
-770653830519015625/26511575131432
29818
Z/3Z
[875, 94716]
0
-
-
-
-
-31
-32 [0, 0, 0, -28124928, 58937258448]
-1130271990762962944/35271416859875
32795
Z/3Z
[2028, 101196]
1
[13502892 : -755465508 : 2197]
8.9484601482168
[-72252/401791, 927041/401791]
[-72252 : 927041 : 401791],
[-60480818415042710403839 : 52876914530788976859000 : 320259918222486796899839],
...
-32
-33 [0, 0, 0, -31827411, 70786878318]
-114154707051/3241792
1998
Z/3Z
[2187, 107892]
1
[7047 : 443232 : 1]
2.01817989704259
[35/13, -3/13]
[35 : -3 : 13],
[61017 : -38920 : 278863],
...
-33
-34 [0, 0, 0, -35882784, 84565228176]
-2347291899471167488/60842207901691
39331
Z/3Z
[2352, 114804]
1
[3360 : 43956 : 1]
2.00250951407404
[4/31, -7/31]
[4 : -7 : 31],
[-208089 : -120536 : 12617],
...
-34
-35 [0, 0, 0, -40312755, 100516263822]
-3328404840479049625/78964631974808
42902
Z/3Z
[2523, 121932]
1
[1515549 : 31914756 : 343]
6.56121518387899
[14220/23233, -1333/23233]
[14220 : -1333 : 23233],
[-12883613147735221 : -178360012167578280 : 66859277829412621],
...
-35
-36 [0, 0, 0, -45139680, 118906420176]
-237406629888000/5168743489
46683
Z/3Z
[2700, 129276]
1
[15012 : 1680588 : 1]
0.895887085055171
[6, -1]
[6 : -1 : 1],
[215 : -12 : 217],
...
-36
-37 [0, 0, 0, -50386563, 140025952638]
-6499095407581304809/130169674432000
12670
Z/3Z
[2883, 136836]
1
[258 : 2976183 : 8]
3.2299954708661
[-19/52, -193/52]
[-19 : -193 : 52],
[-28461131 : 139263635 : 373474296],
...
-37
-38 [0, 0, 0, -56077056, 164190317328]
-8959098756637130752/165460107134699
54899
Z/3Z
[3072, 144612]
1
[43647600 : -2676407292 : 15625]
9.5867993527623
[-1934524/1581475, -28251/1581475]
[-1934524 : -28251 : 1581475],
[316272736835503429123449 : -7651799657174078616406024 : 11449416243344452215885175],
...
-38
-39 [0, 0, 0, -62235459, 191741590206]
-622201574519811/10618986392
59346
Z/3Z
[3267, 152604]
0
-
-
-
-
-39
-40 [0, 0, 0, -68886720, 223049925072]
-16607919351955456000/262475915987683
64027
Z/3Z
[3468, 160812]
1
[58434 : 2648241 : 8]
5.44567827658815
[4345/2692, -217/2692]
[4345 : -217 : 2692],
[13567014844929 : -84809082593345 : 220850554577096],
...
-40
-41 [0, 0, 0, -76056435, 258515050446]
-22352010974904417625/327766843587392
34474
Z/3Z
[3675, 169236]
0
-
-
-
-
-41
-42 [0, 0, 0, -83770848, 298567805328]
-2081462648832/28372625
8235
Z/3Z
[3888, 177876]
0
-
-
-
-
-42
-43 [0, 0, 0, -92056851, 343671713838]
-39634834772023368697/503104816245304
79534
Z/3Z
[4107, 186732]
0
-
-
-
-
-43
-44 [0, 0, 0, -100941984, 394324598736]
-52254562618054770688/618709787248931
12173
Z/3Z
[4332, 195804]
1
[12324 : 1010988 : 1]
3.35783936101269
[234/67, -19/67]
[234 : -19 : 67],
[237730679 : -71983548 : 858924121],
...
-44
-45 [0, 0, 0, -110454435, 451060233822]
-3478298828515875/38477541376
11394
Z/3Z
[4563, 205092]
1
[2322 : 5178573 : 8]
3.30502398789133
[-21/52, -223/52]
[-21 : -223 : 52],
[-33420787 : 235833675 : 576175912],
...
-45
-46 [0, 0, 0, -120623040, 514450035216]
-89166047565611008000/922957793611147
13909
Z/3Z
[4800, 214596]
1
[6240 : 68796 : 1]
2.19306099007946
[5/43, -8/43]
[5 : -8 : 43],
[-635056 : -400095 : 27391],
...
-46
-47 [0, 0, 0, -131477283, 585104791518]
-115467794261292522889/1120003816625000
20770
Z/3Z
[5043, 224316]
1
[68802 : 2406375 : 8]
3.29178027038073
[221/196, -9/196]
[221 : -9 : 196],
[5875785 : -332837713 : 423147928],
...
-47
-48 [0, 0, 0, -143047296, 663676432848]
-7555381066727424/68769820673
110619
Z/3Z
[5292, 234252]
1
[1214066124 : -29572335036 : 148877]
11.5681159777135
[-1580745/39825737, 28843468/39825737]
[-1580745 : 28843468 : 39825737],
[-1822074360342134849686283449304 : -61919328872757536991503714145 : 955823563089833209067218160609],
...
-48
-49 [0, 0, 0, -155363859, 750859838766]
-190527955520776536313/1629534999491776
58838
Z/3Z
[5547, 244404]
2
[23943 : 3279744 : 1],
[98454:30655962:1]
0.857433397160275,
7.01023917160186
[7, -1],
[52651/2582, -20601/2582]
[7 : -1 : 1],
[171 : -7 : 172],
[52651 : -20601 : 2582],
[3006470537890478883 : -461238693412471019 : 399431242959994664],
...
-49
-50 [0, 0, 0, -168458400, 847394685072]
-242877185740288000000/1954390898394683
125027
Z/3Z
[5808, 254772]
1
[5362957488 : 1102954028940 : 117649]
11.0384610723747
[24383561/1980727, -5920704/1980727]
[24383561 : -5920704 : 1980727],
[85789055786863795777050936192 : -5250260072193277898321753567 : 29126572951804324001044552415],
...
-50
-51 [0, 0, 0, -182362995, 954067329486]
-795309684625/6028568
1638
Z/3Z
[6075, 265356]
0
-
-
-
-
-51
-52 [0, 0, 0, -197110368, 1071712736208]
-389078393309343023104/2781507610547875
140635
Z/3Z
[6348, 276156]
0
-
-
-
-
-52
-53 [0, 0, 0, -212733891, 1201216439358]
-489123758250199728937/3301559230667264
37226
Z/3Z
[6627, 287172]
1
[-32603434539 : -1525869009756 : 2048383]
14.9205549865239
[-6254246146/228354001, -4235900895/228354001]
[-6254246146 : -4235900895 : 228354001],
[1036315127949934259577135771218925312615 : -475423207176246551858690232783832484896 : 38508339242451020603653963581510296761],
...
-53
-54 [0, 0, 0, -229267584, 1343516545296]
-31106086717095936/198461344537
157491
Z/3Z
[6912, 298404]
0
-
-
-
-
-54
-55 [0, 0, 0, -246746115, 1499605773822]
763237460591208843625/4607609079756808
166402
Z/3Z
[7203, 309852]
1
[109266 : 6584355 : 8]
3.18993811921432
[163/76, -7/76]
[163 : -7 : 76],
[27242397 : -71608997 : 329162840],
...
-55
-56 [0, 0, 0, -265204800, 1670533538256]
-947660650983424000000/5418667951572707
175643
Z/3Z
[7500, 321516]
1
[42107223432 : 3487033379313 : 2515456]
13.5801759180157
[1064663271/329267696, -63278951/329267696]
[1064663271 : -63278951 : 329267696],
[74106354196110230104344970446608225 : -38276422574778504325399214119969377, 397445071954024070067904788079473952],
...
-56
-57 [0, 0, 0, -284679603, 1857408064398]
-59550644977653843/322828856000
1890
Z/3Z
[7803, 333396]
1
[930231 : 897047136 : 1]
7.65496458370637
[135603/2221, -95119/2221]
[135603 : -95119 : 2221],
[118588688220643536277 : -58350778986076971030 : 3724719686237474153],
...
-57
-58 [0, 0, 0, -305207136, 2061398548368]
-1444417555578789855232/7430742730470619
195139
Z/3Z
[8112, 345492]
0
-
-
-
-
-58
-59 [0, 0, 0, -326824659, 2283737353326]
-1773589698804229853113/8666412891063416
205406
Z/3Z
[8427, 357804]
1
[39714 : 7081857 : 8]
6.26340902518577
[-817/6244, -17739/6244]
[-817 : -17739 : 6244],
[-4328023542375483 : 4759357461158851 : 34850407808917064],
...
-59
-60 [0, 0, 0, -349570080, 2525722245072]
-151249047552000/702595369
24003
Z/3Z
[8748, 370332]
2
[12393 : 311283 : 1],
[35964 : 6039036 : 1]
3.28227775921746,
4.66108137004981
[117/158, -5/158],
[1812/211, -259/211]
[117 : -5 : 158],
[1812 : -259 : 211],
[-11713495 : -461499129 : 253074604],
[1538466577823 : -48503452920 : 1258993387777],
...
-60
-61 [0, 0, 0, -373481955, 2788718666526]
-2646778376545742679625/11698319739584512
7094
Z/3Z
[9075, 383076]
0
-
-
-
-
-61
-62 [0, 0, 0, -398599488, 3074162051088]
-3217502678129498128384/13541687886588875
238355
Z/3Z
[9408, 396036]
0
-
-
-
-
-62
-63 [0, 0, 0, -424962531, 3383560174878]
-198093093820802019/794537372728
250074
Z/3Z
[9747, 409212]
1
[78659678032470 : -20320127375350293 : 1092727000]
7.3497562145209
[-77354606721/20707834820, 319899185941/20707834820]
[-77354606721 : 319899185941 : 20707834820],
[-150912217001235502492619550472445275449375701 : 2531673934575437452369471060557802391143077741 : 687498234895954739706704662002356733490493240],
...
-63
-64 [0, 0, 0, -452611584, 3718495547856]
-4710702768521413132288/18019965360426211
262171
Z/3Z
[10092, 422604]
1
[36300 : 5926284 : 1]
1.03972203021199
[8, -1]
[8 : -1 : 1],
[511 : -16 : 513],
...
-64
-65 [0, 0, 0, -481587795, 4080627843822]
-5674598297050455501625/20718022368655808
137326
Z/3Z
[10443, 436212]
1
[448392867 : 29276366112 : 24389]
10.3631317671339
[9326853/4094597, -354485/4094597]
[9326853 : -354485 : 4094597],
[131637260311479597925846720 : -320346762153175966962323097 : 1661155953402314694381844697],
...
-65
-66 [0, 0, 0, -511932960, 4471696369296]
-346303348199424000/1207609389449
287523
Z/3Z
[10800, 450036]
1
[-25488 : 980748 : 1]
5.51694099751723
[-3423/127, -4432/127]
[-3423 : -4432 : 127],
[-177763515023200 : 298000074666273 : 5962530823327],
...
-66
-67 [0, 0, 0, -543689523, 4893522571278]
-8165101728591895367449/27213862183039000
300790
Z/3Z
[11163, 464076]
1
[28789527 : 304151652 : 2197]
9.11160214022939
[93733/1399411, -308584/1399411]
[93733 : -308584 : 1399411],
[-845432093340425699173296 : -259633170618615266699255 : 42273625112342151905351],
...
-67
-68 [0, 0, 0, -576900576, 5348012583888]
-9754648514529913372672/31095109250204579
314459
Z/3Z
[11532, 478332]
1
[17337 : 746523 : 1]
4.65763025875077
[1251/914, -35/914]
[1251 : -35 : 914],
[41799250745 : -955257118569 : 1789483241164],
...
-68
-69 [0, 0, 0, -611609859, 5837159813886]
-810052784622459/2471326208
702
Z/3Z
[11907, 492804]
0
-
-
-
-
-69
-70 [0, 0, 0, -647861760, 6363047565072]
-13815154527302582272000/40363137319160683
343027
Z/3Z
[12288, 507492]
0
-
-
-
-
-70
-71 [0, 0, 0, -685701315, 6927851701566]
-16379990838508877763625/45858877624217672
357938
Z/3Z
[12675, 522396]
0
-
-
-
-
-71
-72 [0, 0, 0, -725174208, 7533843349968]
-984338479974187008/2642380890625
74655
Z/3Z
[13068, 537516]
2
[4644 : 2065500 : 1],
[729756 : 622981044 : 1]
2.40807978084365,
4.24028652807226
[-6/19, -91/19],
[723/13, -436/13]
[-6 : -91 : 19],
[723 : -436 : 13],
[-128765 : 912516 : 2862749],
[164777859320 : -59925170319 : 5990593999],
...
-72
-73 [0, 0, 0, -766326771, 8183391640398]
-22863920436331891257817/58883845631397184
194522
Z/3Z
[13467, 552852]
1
[5963601 : 116537184 : 343]
6.45206936643823
[13483/24577, -715/24577]
[13483 : -715 : 24577],
[-4430900416244445 : -100081508000510782 : 30124735187214787],
...
-73
-74 [0, 0, 0, -809205984, 8878966486416]
-26920676209308825714688/66553712387028251
405251
Z/3Z
[13872, 568404]
0
-
-
-
-
-74
-75 [0, 0, 0, -853859475, 9623141403822]
-1606854750516421875/3815429734376
421902
Z/3Z
[14283, 584172]
0
-
-
-
-
-75
-76 [0, 0, 0, -900335520, 10418596368336]
-37078474703382654976000/84606253500853027
439003
Z/3Z
[14700, 600156]
1
[17220 : 145044 : 1]
2.5018131619089
[7/73, -10/73]
[7 : -10 : 73],
[-3886740 : -2730119 : 98039],
...
-76
-77 [0, 0, 0, -948683043, 11268120712158]
-43378259391823416065929/95168577660416000
57070
Z/3Z
[15123, 616356]
1
[79707 : 21024900 : 1]
5.95145727810543
[12581/853, -2394/853]
[12581 : -2394 : 853],
[4765782886302816 : -180427007848841 : 1710316945930025],
...
-77
-78 [0, 0, 0, -998951616, 12174616059408]
-130725250859008/275894451
1953
Z/3Z
[15552, 632772]
0
-
-
-
-
-78
-79 [0, 0, 0, -1051191459, 13141099300446]
-59013881216973693915913/119871287144811496
493066
Z/3Z
[15987, 649404]
1
[387075 : 240001164 : 1]
4.77376893542808
[1764/43, -823/43]
[1764 : -823 : 43],
[4517407691051 : -983467527336 : 259998360973],
...
-79
-80 [0, 0, 0, -1105453440, 14170705605072]
-68632540334867611648000/134238962783763683
512027
Z/3Z
[16428, 666252]
1
[2138973287478 : -466424909398827 : 34645976]
18.0451402675293
[-134711653167/88915731292, 979804259375/88915731292]
[-134711653167 : 979804259375 : 88915731292],
[-3084043354758390857757733663969634746181290625 : 126618874356690973368878273165823409183365628929 : 83854006609652688588658308089034505631601386696],
...
-80
-81 [0, 0, 0, -1161789075, 15266691474606]
-4047615773964421875/7626759805504
265734
Z/3Z
[16875, 683316]
1
[52839 : 10069920 : 1]
0.983088371713441
[9, -1]
[9 : -1 : 1],
[364 : -9 : 365],
...
-81
-82 [0, 0, 0, -1220250528, 16432437832848]
-92311481347283674169344/167644176155954875
551395
Z/3Z
[17328, 700596]
1
[-2573628 : 44097129 : 64]
7.4428244730265
[-67295/1736, -73841/1736]
[-67295 : -73841 : 1736],
[-22503673467247386671 : 27094500527785539215 : 169892379082346256],
...
-82
-83 [0, 0, 0, -1280890611, 17671453155918]
-106768916208675642378457/186966738688301144
571814
Z/3Z
[17787, 718092]
0
-
-
-
-
-83
-84 [0, 0, 0, -1343762784, 18987376640976]
-6263040815766798336/10579901690177
592731
Z/3Z
[18252, 735804]
1
[22140 : 298404 : 1]
4.18444552328957
[279/793, -28/793]
[279 : -28 : 793],
[-13354869304 : -139137079311 : 17239495663],
...
-84
-85 [0, 0, 0, -1408921155, 20383981413822]
-142091722137655041459625/231647496737079808
153538
Z/3Z
[18723, 753732]
1
[-39237 : 3906252 : 1]
6.15626325994788
[-7690/307, -12857/307]
[-7690 : -12857 : 307],
[-5847177732046651 : 16343730188304840 : 512854852182451],
...
-85
-86 [0, 0, 0, -1476420480, 21865177775376]
-163507956199226343424000/257360188648783787
636083
Z/3Z
[19200, 771876]
1
[119582501747273350752 : -1154821314323066075028 : 5505945596330941]
28.4628461913402
[-1208131767609148369/5786669814541025089, 319409653453108344/5786669814541025089]
[-1208131767609148369 : 319409653453108344 : 5786669814541025089],
[-62455183669740747190320316556973184933860212477718109928475204632957362032 : -234060090301304039697032528378065158984818422267782601606759089150013874065 : 10392597464239065540276445910464840369924469879759434852009803120140435377],
...
-86
-87 [0, 0, 0, -1546316163,23435016487038]
-13091360218356987/19902511000
73170
Z/3Z
[19683, 790236]
1
[8841519282402 : -234613698461505 : 351895816]
14.4646307988008
[-64989513/2989660076, 2310135877/2989660076]
[-64989513 : 2310135877 : 2989660076],
[-61731584118880701978304236960751764221 : -935408155862442509974299318900570459 : 36859043062806088232681207960088987080],
...
-87
-88 [0, 0, 0, -1618664256, 25097692094928]
-215466142825099449597952/316516000050294499
681499
Z/3Z
[20172, 808812]
2
[26652 : 942732 : 1],
[1568388 : 24592113 : 64]
4.71745581471358,
6.89950599307613
[1220/1147, -27/1147],
[18745/44168, -1273/44168]
[1220 : -27 : 1147],
[18745 : -1273 : 44168],
[8284800879 : -1841008311320 : 2082800232401],
[-101301456670226911 : -1615172995620953505 : 291004744936391056],
...
-88
-89 [0, 0, 0, -1693521459, 26857546293006]
-246763442170032559845913/350396660733839936
352498
Z/3Z
[20667, 827604]
1
[46263 : 6893856 : 1]
3.01909486380241
[189/31, -13/31]
[189 : -13 : 31],
[43689607 : -3022866 : 104678723],
...
-89
-90 [0, 0, 0, -1770945120, 28719071325072]
-14336156194762752000/19685187081001
729027
Z/3Z
[21168, 846612]
1
[-29376 : 7442604 : 1]
1.93857537925384
[-9, -28]
[-9 : -28 : 1],
[-20440 : 197577 : 21223],
...
-90
-91 [0, 0, 0, -1850993235, 30686913425646]
-322198268379049889997625/427975799187283192
753598
Z/3Z
[21675, 865836]
0
-
-
-
-
-91
-92 [0, 0, 0, -1933724448, 32765876299728]
-367360511953922000257024/472210479744675875
778715
Z/3Z
[22188, 885276]
2
[23916 : 445284 : 1],
[196068 : 84799764 : 1]
3.84847444379003,
7.28239606375592
[9/439, -208/439],
[87239/3241, -24930/3241]
[9 : -208 : 439],
[87239 : -24930 : 3241],
[-17597588320 : -842430879 : 3950842399],
[16551297528054502140 : -1354661227317488519 : 2202061839155727479],
...
-92
-93 [0, 0, 0, -2019198051, 34960924641438]
-21249766887537980259/26442284761088
7182
Z/3Z
[22707, 904932]
0
-
-
-
-
-93
-94 [0, 0, 0, -2107473984, 37277187691536]
-475549110733732374642688/573050683497389131
830611
Z/3Z
[23232, 924804]
1
[26400 : 199044 : 1]
2.63046371178324
[8/91, -11/91]
[8 : -11 : 91],
[-8283649 : -6039216 : 167713],
...
-94
-95 [0, 0, 0, -2198612835, 39719962833822]
-539951788925836798407625/630308954042848808
122486
Z/3Z
[23763, 944892]
2
[314499 : 174514284 : 1],
[-66126 : 60572421 : 8]
1.8011086107759,
6.60965954253142
[36, -13],
[-8145/4276, -57451/4276]
[36 : -13 : 1],
[-8145 : -57451 : 4276],
[86645 : -11304 : 6979],
[-5076458877226093 : 220731772968631845 : 115502959325431768],
...
-95
-96 [0, 0, 0, -2292675840, 42294719230416]
-42669529104384000/48268303721
98307
Z/3Z
[24300, 965196]
0
-
-
-
-
-96
-97 [0, 0, 0, -2389724883, 45007101495918]
-693349847849657786895289/760298531383000000
91270
Z/3Z
[24843, 985716]
0
-
-
-
-
-97
-98 [0, 0, 0, -2489822496, 47862933410448]
-784176579165041014177792/833819517421406459
941219
Z/3Z
[25392, 1006452]
0
-
-
-
-
-98
-99 [0, 0, 0, -2593031859, 50868221671566]
-45002948956311286611/46415358913672
970326
Z/3Z
[25947, 1027404]
0
-
-
-
-
-99
-100 [0, 0, 0, -2699416800, 54029159685072]
-999352139957922304000000/1000081002187019683
1000027
Z/3Z
[26508, 1048572]
1
[74388 : 16274412 : 1]
1.15129286887616
[10, -1]
[10 : -1 : 1],
[999 : -20 : 1001],
...
-100


[参考文献]


Last Update: 2020.06.21
H.Nakao

Homeに戻る[Homeに戻る]  一覧に戻る[一覧に戻る]