Homeに戻る  一覧に戻る 

2006 is a Congruent Number


[2006.02.04]合同数 2006


■合成数2006=2*17*59は、合同数である。

2006が合同数であることを示すには、楕円曲線
     E: y2 = x3 - 20062x
が自明でない(y!=0である)有理点を持つことを言えば十分である。

Cremonaのmwrank3によって、楕円曲線EのMordel-Weil群E(Q)のrankと生成元を求めると、以下のようになる。
[mwrank3による計算]
$ mwrank3 -b 14 -c 14
Program mwrank: uses 2-descent (via 2-isogeny if possible) to
determine the rank of an elliptic curve E over Q, and list a
set of points which generate E(Q) modulo 2E(Q).
and finally search for further points on the curve.
For more details see the file mwrank.doc.
For details of algorithms see the author's book.

Please acknowledge use of this program in published work,
and send problems to John.Cremona@nottingham.ac.uk.

Version compiled on Mar 22 2003 at 13:23:23 by GCC 3.2.1
using base arithmetic option LiDIA_ALL (LiDIA bigints and multiprecision floatin
g point)
Using LiDIA multiprecision floating point with 15 decimal places.
Enter curve: [0,0,0,-4024036,0]

Curve [0,0,0,-4024036,0] :
3 points of order 2:
[0 : 0 : 1], [2006 : 0 : 1], [-2006 : 0 : 1]

****************************
* Using 2-isogeny number 1 *
****************************

Using 2-isogenous curve [0,0,0,16096144,0]
-------------------------------------------------------
First step, determining 1st descent Selmer groups
-------------------------------------------------------
After first local descent, rank bound = 3
rk(S^{phi}(E'))=        4
rk(S^{phi'}(E))=        1

-------------------------------------------------------
Second step, determining 2nd descent Selmer groups
-------------------------------------------------------
After second local descent, rank bound = 3
rk(phi'(S^{2}(E)))=     4
rk(phi(S^{2}(E')))=     1
rk(S^{2}(E))=   5
rk(S^{2}(E'))=  4

****************************
* Using 2-isogeny number 2 *
****************************

Using 2-isogenous curve [0,-12036,0,4024036,0]
-------------------------------------------------------
First step, determining 1st descent Selmer groups
-------------------------------------------------------
After first local descent, rank bound = 3
rk(S^{phi}(E'))=        4
rk(S^{phi'}(E))=        1

-------------------------------------------------------
Second step, determining 2nd descent Selmer groups
-------------------------------------------------------
After second local descent, rank bound = 3
rk(phi'(S^{2}(E)))=     4
rk(phi(S^{2}(E')))=     1
rk(S^{2}(E))=   5
rk(S^{2}(E'))=  4

****************************
* Using 2-isogeny number 3 *
****************************

Using 2-isogenous curve [0,12036,0,4024036,0]
-------------------------------------------------------
First step, determining 1st descent Selmer groups
-------------------------------------------------------
After first local descent, rank bound = 3
rk(S^{phi}(E'))=        3
rk(S^{phi'}(E))=        2

-------------------------------------------------------
Second step, determining 2nd descent Selmer groups
-------------------------------------------------------
After second local descent, rank bound = 2
rk(phi'(S^{2}(E)))=     3
rk(phi(S^{2}(E')))=     1
rk(S^{2}(E))=   5
rk(S^{2}(E'))=  3

After second local descent, combined upper bound on rank = 2
Third step, determining E(Q)/phi(E'(Q)) and E'(Q)/phi'(E(Q))
-------------------------------------------------------
1. E(Q)/phi(E'(Q))
-------------------------------------------------------
(c,d)  =(-6018,8048072)
(c',d')=(12036,4024036)
First stage (no second descent yet)...
(17,0,-6018,0,473416):  (x:y:z) = (10:204:1)
        Curve E         Point [1700 : 34680 : 1], height = 3.79708469113873
(59,0,-6018,0,136408):  (x:y:z) = (3:295:1)
        Curve E         Point [531 : 52215 : 1], height = 3.79708469113873
After first global descent, this component of the rank = 3
-------------------------------------------------------
2. E'(Q)/phi'(E(Q))
-------------------------------------------------------
First stage (no second descent yet)...
(17,0,12036,0,236708):  no rational point found (hlim=8)
After first global descent, this component of the rank
        has lower bound 0
        and upper bound 1
        (difference =   1)
Second descent will attempt to reduce this
Second stage (using second descent)...
d1=17:
Second descent inconclusive for d1=17: ELS descendents exist but no rational poi
nt found

After second global descent, this component of the rank
        has lower bound 0
        and upper bound 1
        (difference =   1)

-------------------------------------------------------
Summary of results:
-------------------------------------------------------
        1 <= rank(E) <= 2
        #E(Q)/2E(Q) >= 8

Information on III(E/Q):
        #III(E/Q)[phi']    <= 4
        #III(E/Q)[2]       is between 2 and 4

Information on III(E'/Q):
        #phi'(III(E/Q)[2]) = 1
        #III(E'/Q)[phi]    = 1
        #III(E'/Q)[2]      <= 2

-------------------------------------------------------

List of points on E = [0,0,0,-4024036,0]:

I.  Points on E mod phi(E')
Point [-306 : 34680 : 1], height = 3.79708469113873
Point [-1475 : 52215 : 1], height = 3.79708469113873

II.  Points on phi(E') mod 2E
--none (modulo torsion).

-------------------------------------------------------
Computing full set of 2 coset representatives for
2E(Q) in E(Q) (modulo torsion), and sorting into height order....done.

1 <= rank <= 2
Height Constant = 7.95047155880185

Max height = 3.79708469113873
Bound on naive height of extra generators = 8.37236985781727
After point search, rank of points found is 1

Generator 1 is [-306 : 34680 : 1]; height 3.79708469113873

The rank has not been completely determined,
only a lower bound of 1 and an upper bound of 2.

If the lower bound is strict, the basis given is for the full Mordell-Weil group
 (modulo torsion).
Regulator (of this subgroup) = 3.79708469113873
 (4.42e+04 seconds)
Enter curve: [0,0,0,0,0]

E(Q)のrankは1または2であり、E(Q)/E(Q)torsの生成元の1つは(-306,34680)である。
よって、2006は合同数である。

また、pari/gpにより、楕円曲線EのL-関数 LEの関数等式の符号は、-1であることが分かる。 よって、LE(s)はs=1で、奇数次の零点を持つ。
BSD予想を仮定すると、rank E(Q)=1となる。

[pari/gpによる計算]
gp>  e=ellinit([0,0,0,-2006^2,0])
time = 102 ms.
%1 = [0, 0, 0, -4024036, 0, 0, -8048072, 0, -16192865729296, 193153728, 0, 4170283176822614953984, 1728, [2006.000000000000000000000000, 0.E-28, -2006.000000000000000000000000]~, 0.05854324022534062464932538198, 0.05854324022534062464932538198*I, -26.83138686462681503361636868, -80.49416059388044510084910605*I, 0.003427310976081940591969140468]
gp>  ellglobalred(e)
time = 55 ms.
%2 = [64384576, [1, 0, 0, 0], 64]
gp>  elllseries(e,1.00001)
time = 1mn, 14,427 ms.
%3 = 0.00007112928828965770414582745048
gp>  elllseries(e,2-1.00001)
time = 1mn, 21,032 ms.
%4 = -0.00007113864254779321396001499387
gp>  ellrootno(e,1)
time = 11 ms.
%5 = -1

■面積が2006である有理直角三角形の3辺の長さa,b,cを求める。

pari/GPによって、(3辺の長さが全て有理数で、面積が2006である)直角三角形の3辺の長さを、P1(X,Y)より以下のように計算する。

[pari/gpによる計算]
gp>  read("./congr.gp")
time = 59 ms.
gp>  ss(e,[-306,34680],2006,10)
Pi/2-congruent number 2006
2([-306, 34680]): [177/5, 340/3, 1781/15]
4([-306, 34680]): [2608039/53430, 214361160/2608039, 13320805745521/139347523770]
6([-306, 34680]): [1096292682768580/89598005203437, 5286282307002783/16121951217185, 473970003717484279677323566421/1444494669046899105695464845]
8([-306, 34680]): [84913064761177931647318559/3712442590519080237068340, 14894319673162549911118180080/84913064761177931647318559, 55762422389013803519428353258482450280167593410156481/315234878110901825802045825733466627868996233322060]
10([-306, 34680]): [1060906838709427440516351853707632258006300/17057675849220703606218823672724068607283, 1006402875104021512766910596690720047829697/15601571157491580007593409613347533205975, 23846693303611761611740400493200164768822262512210855596176575257704558637246164501/266126543543042422733515318496424223840561094670028557337389273736113914224115925]
time = 110 ms.
gp>  (177/5)^2+(340/3)^2-(1781/15)^2
time = 0 ms.
%6 = 0
gp>  (1/2)*(177/5)*(340/3)
time = 0 ms.
%7 = 2006
gp>  (2608039/53430)^2+(214361160/2608039)^2-(13320805745521/139347523770)^2
time = 0 ms.
%8 = 0
gp>  (1/2)*(2608039/53430)*(214361160/2608039)
time = 0 ms.
%9 = 2006
よって、面積2006の有理直角三角形で、一番高さの小さいものは、(177/5, 340/3, 1781/15)であり、その次に高さの小さいものは、(2608039/53430, 214361160/2608039, 13320805745521/139347523770)である。


[参考文献]


Last Update: 2009.04.19
H.Nakao

Homeに戻る[Homeに戻る]  一覧に戻る[一覧に戻る]