2n | B2n | B2nの素因数分解 |
2 | 1/6 | 1/(2*3) |
4 | -1/30 | -1/(2*3*5) |
6 | 1/42 | 1/(2*3*7) |
8 | -1/30 | -1/(2*3*5) |
10 | 5/66 | 5/(2*3*11) |
12 | -691/2730 | -691/(2*3*5*7*13) |
14 | 7/6 | 7/(2*3) |
16 | -3617/510 | -3617/(2*3*5*17) |
18 | 43867/798 | 43867/(2*3*7*19) |
20 | -174611/330 | -(283*617)/(2*3*5*11) |
22 | 854513/138 | (11*131*593)/(2*3*23) |
24 | -236364091/2730 | -(103*2294797)/(2*3*5*7*13) |
26 | 8553103/6 | (13*657931)/(2*3) |
28 | -23749461029/870 | -(7*9349*362903)/(2*3*5*29) |
30 | 8615841276005/14322 | (5*1721*1001259881)/(2*3*7*11*31) |
32 | -7709321041217/510 | -(37*683*305065927)/(2*3*5*17) |
34 | 2577687858367/6 | (17*151628697551)/(2*3) |
36 | -26315271553053477373/1919190 | -(26315271553053477373)/(2*3*5*7*13*19*37) |
38 | 2929993913841559/6 | (19*154210205991661)/(2*3) |
40 | -261082718496449122051/13530 | -(137616929*1897170067619)/(2*3*5*11*41) |
42 | 1520097643918070802691/1806 | 1520097643918070802691/(2*3*7*43) |
44 | -27833269579301024235023/690 | -(11*59*8089*2947939*1798482437)/(2*3*5*23) |
46 | 596451111593912163277961/282 | (23*383799511*67568238839737)/(2*3*47) |
48 | -5609403368997817686249127547/46410 | -(653*56039*153289748932447906241)/(2*3*5*7*13*17) |
50 | 495057205241079648212477525/66 | (52*417202699*47464429777438199)/(2*3*11) |
2k | ζ(2k) | ζ(2k)/π2kの素因数分解 |
2 | (1/6)π2 | 1/(2*3) |
4 | (1/90)π4 | 1/(2*32*5) |
6 | (1/945)π6 | 1/(33*5*7) |
8 | (1/9450)π8 | 1/(2*33*52*7) |
10 | (1/93555)π10 | 1/(35*5*7*11) |
12 | (691/638512875)π12 | 691/(36*53*72*11*13) |
14 | (2/18243225)π14 | 2/(36*52*7*11*13) |
16 | (3617/325641566250)π16 | 3617/(2*37*54*72*11*13*17) |
18 | (43867/38979295480125)π18 | 43867/(39*53*73*11*13*17*19) |
20 | (174611/1531329465290625)π20 | (283*617)/(39*55*72*11*13*17*19) |
22 | (155366/13447856940643125)π22 | (2*131*593)/(310*54*73*11*13*17*19*23) |
24 | (236364091/201919571963756521875)π24 | (103*2294797)/(311*55*74*112*132*17*19*23) |
26 | (1315862/11094481976030578125)π26 | (2*657931)/(311*56*73*112*13*17*19*23) |
28 | (6785560294/564653660170076273671875)π28 | (2*9349*362903)/(314*57*73*112*132*17*19*23*29) |
30 | (6892673020804/5660878804669082674070015625)π30 | (2*1721*1001259881)/(315*56*75*113*132*17*19*23*29*31) |
32 | (7709321041217/ 62490220571022341207266406250)π32 |
(37*683*305065927)/ (2*315*58*74*112*132*172*19*23*29*31) |
34 | (151628697551/ 12130454581433748587292890625)π34 |
151628697551/ (316*57*74*113*132*17*19*23*29*31) |
36 | (26315271553053477373/ 20777977561866588586487628662044921875)π36 |
26315271553053477373/ (318*59*76*113*133*172*192*23*29*31*37) |
38 | (308420411983322/ 2403467618492375776343276883984375)π38 |
(2*154210205991661)/ (318*58*75*113*132*172*19*23*29*31*37) |
40 | (261082718496449122051/ 20080431172289638826798401128390556640625)π40 |
(137616929*1897170067619)/ (319*510*75*114*133*172*192*23*29*31*37*41) |
42 | (3040195287836141605382/ 2307789189818960127712594427864667427734375)π42 |
(2*1520097643918070802691)/ (320*59*77*113*133*172*192*23*29*31*37*41*43) |
44 | (5060594468963822588186/ 37913679547025773526706908457776679169921875)π44 |
(2*59*8089*2947939*1798482437)/ (320*510*76*113*133*172*192*232*29*31*37*41*43) |
46 | (103730628103289071874428/ 7670102214448301053033358480610212529462890625)π46 |
(2*383799511*67568238839737)/ (322*510*76*114*133*172*192*23*29*31*37*41*43*47) |
48 | (5609403368997817686249127547/ 4093648603384274996519698921478879580162286669921875)π48 |
(653*56039*153289748932447906241)/ (323*511*77*114*134*173*192*232*29*31*37*41*43*47) |
50 | (39604576419286371856998202/ 285258771457546764463363635252374414183254365234375)π50 |
(2*417202699*47464429777438199)/ (323*510*78*115*133*172*192*232*29*31*37*41*43*47) |
Last Update: 2005.06.12 |
H.Nakao |