bash-2.05a$ gp Reading GPRC: /home/his/.gprc ...Done. GP/PARI CALCULATOR Version 2.1.4 (released) i386 running netbsd 32-bit version (readline v4.2a enabled, extended help available) Copyright (C) 2002 The PARI Group PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER. Type ? for help, \q to quit. Type ?12 for how to get moral (and possibly technical) support. realprecision = 28 significant digits seriesprecision = 16 significant terms format = g0.28 parisize = 50000000, primelimit = 500000 gp> read("./x257.gp") time = 64 ms. gp> check(3) [256] time = 36 ms. gp> check(5) [256] time = 4 ms. gp> check(7) [256] time = 4 ms. gp> check(19) [256] time = 5 ms. gp> a time = 0 ms. %1 = Mod(x, x^257 - 1) gp> z time = 0 ms. %2 = 0.9997011578430936601557841494 + 0.02444575642474446432707565555*I gp> for(i=0,1,print("p",i,"=",p(i))) p0=Mod(x^256 + x^255 + x^253 + x^249 + x^248 + x^246 + x^244 + x^242 + x^241 + x^240 + x^239 + x^236 + x^235 + x^234 + x^232 + x^231 + x^228 + x^227 + x^226 + x^225 + x^223 + x^222 + x^221 + x^215 + x^213 + x^211 + x^208 + x^207 + x^205 + x^200 + x^199 + x^198 + x^197 + x^196 + x^195 + x^193 + x^190 + x^189 + x^187 + x^185 + x^184 + x^178 + x^176 + x^173 + x^169 + x^168 + x^165 + x^162 + x^159 + x^158 + x^157 + x^153 + x^146 + x^144 + x^143 + x^141 + x^140 + x^139 + x^137 + x^136 + x^135 + x^134 + x^133 + x^129 + x^128 + x^124 + x^123 + x^122 + x^121 + x^120 + x^118 + x^117 + x^116 + x^114 + x^113 + x^111 + x^104 + x^100 + x^99 + x^98 + x^95 + x^92 + x^89 + x^88 + x^84 + x^81 + x^79 + x^73 + x^72 + x^70 + x^68 + x^67 + x^64 + x^62 + x^61 + x^60 + x^59 + x^58 + x^57 + x^52 + x^50 + x^49 + x^46 + x^44 + x^42 + x^36 + x^35 + x^34 + x^32 + x^31 + x^30 + x^29 + x^26 + x^25 + x^23 + x^22 + x^21 + x^18 + x^17 + x^16 + x^15 + x^13 + x^11 + x^9 + x^8 + x^4 + x^2 + x, x^257 - 1) p1=Mod(x^254 + x^252 + x^251 + x^250 + x^247 + x^245 + x^243 + x^238 + x^237 + x^233 + x^230 + x^229 + x^224 + x^220 + x^219 + x^218 + x^217 + x^216 + x^214 + x^212 + x^210 + x^209 + x^206 + x^204 + x^203 + x^202 + x^201 + x^194 + x^192 + x^191 + x^188 + x^186 + x^183 + x^182 + x^181 + x^180 + x^179 + x^177 + x^175 + x^174 + x^172 + x^171 + x^170 + x^167 + x^166 + x^164 + x^163 + x^161 + x^160 + x^156 + x^155 + x^154 + x^152 + x^151 + x^150 + x^149 + x^148 + x^147 + x^145 + x^142 + x^138 + x^132 + x^131 + x^130 + x^127 + x^126 + x^125 + x^119 + x^115 + x^112 + x^110 + x^109 + x^108 + x^107 + x^106 + x^105 + x^103 + x^102 + x^101 + x^97 + x^96 + x^94 + x^93 + x^91 + x^90 + x^87 + x^86 + x^85 + x^83 + x^82 + x^80 + x^78 + x^77 + x^76 + x^75 + x^74 + x^71 + x^69 + x^66 + x^65 + x^63 + x^56 + x^55 + x^54 + x^53 + x^51 + x^48 + x^47 + x^45 + x^43 + x^41 + x^40 + x^39 + x^38 + x^37 + x^33 + x^28 + x^27 + x^24 + x^20 + x^19 + x^14 + x^12 + x^10 + x^7 + x^6 + x^5 + x^3, x^257 - 1) time = 83 ms. gp> for(i=0,1,print("p",i,"=",pz(i))) p0=7.515609770940698682435677372 - 3.02922587 E-28*I p1=-8.515609770940698682435677385 + 2.047006710470658903 E-27*I time = 32 ms. gp> p(0)+p(1) time = 41 ms. %3 = Mod(x^256 + x^255 + x^254 + x^253 + x^252 + x^251 + x^250 + x^249 + x^248 + x^247 + x^246 + x^245 + x^244 + x^243 + x^242 + x^241 + x^240 + x^239 + x^238 + x^237 + x^236 + x^235 + x^234 + x^233 + x^232 + x^231 + x^230 + x^229 + x^228 + x^227 + x^226 + x^225 + x^224 + x^223 + x^222 + x^221 + x^220 + x^219 + x^218 + x^217 + x^216 + x^215 + x^214 + x^213 + x^212 + x^211 + x^210 + x^209 + x^208 + x^207 + x^206 + x^205 + x^204 + x^203 + x^202 + x^201 + x^200 + x^199 + x^198 + x^197 + x^196 + x^195 + x^194 + x^193 + x^192 + x^191 + x^190 + x^189 + x^188 + x^187 + x^186 + x^185 + x^184 + x^183 + x^182 + x^181 + x^180 + x^179 + x^178 + x^177 + x^176 + x^175 + x^174 + x^173 + x^172 + x^171 + x^170 + x^169 + x^168 + x^167 + x^166 + x^165 + x^164 + x^163 + x^162 + x^161 + x^160 + x^159 + x^158 + x^157 + x^156 + x^155 + x^154 + x^153 + x^152 + x^151 + x^150 + x^149 + x^148 + x^147 + x^146 + x^145 + x^144 + x^143 + x^142 + x^141 + x^140 + x^139 + x^138 + x^137 + x^136 + x^135 + x^134 + x^133 + x^132 + x^131 + x^130 + x^129 + x^128 + x^127 + x^126 + x^125 + x^124 + x^123 + x^122 + x^121 + x^120 + x^119 + x^118 + x^117 + x^116 + x^115 + x^114 + x^113 + x^112 + x^111 + x^110 + x^109 + x^108 + x^107 + x^106 + x^105 + x^104 + x^103 + x^102 + x^101 + x^100 + x^99 + x^98 + x^97 + x^96 + x^95 + x^94 + x^93 + x^92 + x^91 + x^90 + x^89 + x^88 + x^87 + x^86 + x^85 + x^84 + x^83 + x^82 + x^81 + x^80 + x^79 + x^78 + x^77 + x^76 + x^75 + x^74 + x^73 + x^72 + x^71 + x^70 + x^69 + x^68 + x^67 + x^66 + x^65 + x^64 + x^63 + x^62 + x^61 + x^60 + x^59 + x^58 + x^57 + x^56 + x^55 + x^54 + x^53 + x^52 + x^51 + x^50 + x^49 + x^48 + x^47 + x^46 + x^45 + x^44 + x^43 + x^42 + x^41 + x^40 + x^39 + x^38 + x^37 + x^36 + x^35 + x^34 + x^33 + x^32 + x^31 + x^30 + x^29 + x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x, x^257 - 1) gp> p(0)*p(1) time = 72 ms. %4 = Mod(64*x^256 + 64*x^255 + 64*x^254 + 64*x^253 + 64*x^252 + 64*x^251 + 64*x^250 + 64*x^249 + 64*x^248 + 64*x^247 + 64*x^246 + 64*x^245 + 64*x^244 + 64*x^243 + 64*x^242 + 64*x^241 + 64*x^240 + 64*x^239 + 64*x^238 + 64*x^237 + 64*x^236 + 64*x^235 + 64*x^234 + 64*x^233 + 64*x^232 + 64*x^231 + 64*x^230 + 64*x^229 + 64*x^228 + 64*x^227 + 64*x^226 + 64*x^225 + 64*x^224 + 64*x^223 + 64*x^222 + 64*x^221 + 64*x^220 + 64*x^219 + 64*x^218 + 64*x^217 + 64*x^216 + 64*x^215 + 64*x^214 + 64*x^213 + 64*x^212 + 64*x^211 + 64*x^210 + 64*x^209 + 64*x^208 + 64*x^207 + 64*x^206 + 64*x^205 + 64*x^204 + 64*x^203 + 64*x^202 + 64*x^201 + 64*x^200 + 64*x^199 + 64*x^198 + 64*x^197 + 64*x^196 + 64*x^195 + 64*x^194 + 64*x^193 + 64*x^192 + 64*x^191 + 64*x^190 + 64*x^189 + 64*x^188 + 64*x^187 + 64*x^186 + 64*x^185 + 64*x^184 + 64*x^183 + 64*x^182 + 64*x^181 + 64*x^180 + 64*x^179 + 64*x^178 + 64*x^177 + 64*x^176 + 64*x^175 + 64*x^174 + 64*x^173 + 64*x^172 + 64*x^171 + 64*x^170 + 64*x^169 + 64*x^168 + 64*x^167 + 64*x^166 + 64*x^165 + 64*x^164 + 64*x^163 + 64*x^162 + 64*x^161 + 64*x^160 + 64*x^159 + 64*x^158 + 64*x^157 + 64*x^156 + 64*x^155 + 64*x^154 + 64*x^153 + 64*x^152 + 64*x^151 + 64*x^150 + 64*x^149 + 64*x^148 + 64*x^147 + 64*x^146 + 64*x^145 + 64*x^144 + 64*x^143 + 64*x^142 + 64*x^141 + 64*x^140 + 64*x^139 + 64*x^138 + 64*x^137 + 64*x^136 + 64*x^135 + 64*x^134 + 64*x^133 + 64*x^132 + 64*x^131 + 64*x^130 + 64*x^129 + 64*x^128 + 64*x^127 + 64*x^126 + 64*x^125 + 64*x^124 + 64*x^123 + 64*x^122 + 64*x^121 + 64*x^120 + 64*x^119 + 64*x^118 + 64*x^117 + 64*x^116 + 64*x^115 + 64*x^114 + 64*x^113 + 64*x^112 + 64*x^111 + 64*x^110 + 64*x^109 + 64*x^108 + 64*x^107 + 64*x^106 + 64*x^105 + 64*x^104 + 64*x^103 + 64*x^102 + 64*x^101 + 64*x^100 + 64*x^99 + 64*x^98 + 64*x^97 + 64*x^96 + 64*x^95 + 64*x^94 + 64*x^93 + 64*x^92 + 64*x^91 + 64*x^90 + 64*x^89 + 64*x^88 + 64*x^87 + 64*x^86 + 64*x^85 + 64*x^84 + 64*x^83 + 64*x^82 + 64*x^81 + 64*x^80 + 64*x^79 + 64*x^78 + 64*x^77 + 64*x^76 + 64*x^75 + 64*x^74 + 64*x^73 + 64*x^72 + 64*x^71 + 64*x^70 + 64*x^69 + 64*x^68 + 64*x^67 + 64*x^66 + 64*x^65 + 64*x^64 + 64*x^63 + 64*x^62 + 64*x^61 + 64*x^60 + 64*x^59 + 64*x^58 + 64*x^57 + 64*x^56 + 64*x^55 + 64*x^54 + 64*x^53 + 64*x^52 + 64*x^51 + 64*x^50 + 64*x^49 + 64*x^48 + 64*x^47 + 64*x^46 + 64*x^45 + 64*x^44 + 64*x^43 + 64*x^42 + 64*x^41 + 64*x^40 + 64*x^39 + 64*x^38 + 64*x^37 + 64*x^36 + 64*x^35 + 64*x^34 + 64*x^33 + 64*x^32 + 64*x^31 + 64*x^30 + 64*x^29 + 64*x^28 + 64*x^27 + 64*x^26 + 64*x^25 + 64*x^24 + 64*x^23 + 64*x^22 + 64*x^21 + 64*x^20 + 64*x^19 + 64*x^18 + 64*x^17 + 64*x^16 + 64*x^15 + 64*x^14 + 64*x^13 + 64*x^12 + 64*x^11 + 64*x^10 + 64*x^9 + 64*x^8 + 64*x^7 + 64*x^6 + 64*x^5 + 64*x^4 + 64*x^3 + 64*x^2 + 64*x, x^257 - 1) gp> pz(0)+pz(1) time = 14 ms. %5 = -1.000000000000000000000000012 + 1.744084122865790370 E-27*I gp> pz(0)*pz(1) time = 13 ms. %6 = -63.99999999999999999999999999 + 1.796407418081780096 E-26*I gp> for(i=0,3,print("q",i,"=",q(i))) q0=Mod(x^256 + x^255 + x^253 + x^249 + x^246 + x^242 + x^241 + x^240 + x^235 + x^234 + x^227 + x^225 + x^223 + x^222 + x^213 + x^211 + x^197 + x^193 + x^190 + x^189 + x^187 + x^184 + x^176 + x^169 + x^165 + x^162 + x^146 + x^140 + x^137 + x^136 + x^134 + x^129 + x^128 + x^123 + x^121 + x^120 + x^117 + x^111 + x^95 + x^92 + x^88 + x^81 + x^73 + x^70 + x^68 + x^67 + x^64 + x^60 + x^46 + x^44 + x^35 + x^34 + x^32 + x^30 + x^23 + x^22 + x^17 + x^16 + x^15 + x^11 + x^8 + x^4 + x^2 + x, x^257 - 1) q1=Mod(x^254 + x^251 + x^250 + x^245 + x^243 + x^238 + x^233 + x^229 + x^224 + x^219 + x^212 + x^210 + x^209 + x^206 + x^204 + x^201 + x^192 + x^191 + x^188 + x^181 + x^180 + x^167 + x^163 + x^161 + x^155 + x^154 + x^152 + x^151 + x^145 + x^138 + x^132 + x^130 + x^127 + x^125 + x^119 + x^112 + x^106 + x^105 + x^103 + x^102 + x^96 + x^94 + x^90 + x^77 + x^76 + x^69 + x^66 + x^65 + x^56 + x^53 + x^51 + x^48 + x^47 + x^45 + x^38 + x^33 + x^28 + x^24 + x^19 + x^14 + x^12 + x^7 + x^6 + x^3, x^257 - 1) q2=Mod(x^248 + x^244 + x^239 + x^236 + x^232 + x^231 + x^228 + x^226 + x^221 + x^215 + x^208 + x^207 + x^205 + x^200 + x^199 + x^198 + x^196 + x^195 + x^185 + x^178 + x^173 + x^168 + x^159 + x^158 + x^157 + x^153 + x^144 + x^143 + x^141 + x^139 + x^135 + x^133 + x^124 + x^122 + x^118 + x^116 + x^114 + x^113 + x^104 + x^100 + x^99 + x^98 + x^89 + x^84 + x^79 + x^72 + x^62 + x^61 + x^59 + x^58 + x^57 + x^52 + x^50 + x^49 + x^42 + x^36 + x^31 + x^29 + x^26 + x^25 + x^21 + x^18 + x^13 + x^9, x^257 - 1) q3=Mod(x^252 + x^247 + x^237 + x^230 + x^220 + x^218 + x^217 + x^216 + x^214 + x^203 + x^202 + x^194 + x^186 + x^183 + x^182 + x^179 + x^177 + x^175 + x^174 + x^172 + x^171 + x^170 + x^166 + x^164 + x^160 + x^156 + x^150 + x^149 + x^148 + x^147 + x^142 + x^131 + x^126 + x^115 + x^110 + x^109 + x^108 + x^107 + x^101 + x^97 + x^93 + x^91 + x^87 + x^86 + x^85 + x^83 + x^82 + x^80 + x^78 + x^75 + x^74 + x^71 + x^63 + x^55 + x^54 + x^43 + x^41 + x^40 + x^39 + x^37 + x^27 + x^20 + x^10 + x^5, x^257 - 1) time = 48 ms. gp> for(i=0,3,print("q",i,"=",qz(i))) q0=9.246073971189892058744173215 - 1.16120325 E-27*I q1=1.584189846017789776668216068 + 4.41762106 E-29*I q2=-1.730464200249193376308495842 + 8.791176483925903573 E-28*I q3=-10.09979961695848845910389345 + 2.003508851087192796 E-27*I time = 19 ms. gp> q(0)+q(2) time = 20 ms. %7 = Mod(x^256 + x^255 + x^253 + x^249 + x^248 + x^246 + x^244 + x^242 + x^241 + x^240 + x^239 + x^236 + x^235 + x^234 + x^232 + x^231 + x^228 + x^227 + x^226 + x^225 + x^223 + x^222 + x^221 + x^215 + x^213 + x^211 + x^208 + x^207 + x^205 + x^200 + x^199 + x^198 + x^197 + x^196 + x^195 + x^193 + x^190 + x^189 + x^187 + x^185 + x^184 + x^178 + x^176 + x^173 + x^169 + x^168 + x^165 + x^162 + x^159 + x^158 + x^157 + x^153 + x^146 + x^144 + x^143 + x^141 + x^140 + x^139 + x^137 + x^136 + x^135 + x^134 + x^133 + x^129 + x^128 + x^124 + x^123 + x^122 + x^121 + x^120 + x^118 + x^117 + x^116 + x^114 + x^113 + x^111 + x^104 + x^100 + x^99 + x^98 + x^95 + x^92 + x^89 + x^88 + x^84 + x^81 + x^79 + x^73 + x^72 + x^70 + x^68 + x^67 + x^64 + x^62 + x^61 + x^60 + x^59 + x^58 + x^57 + x^52 + x^50 + x^49 + x^46 + x^44 + x^42 + x^36 + x^35 + x^34 + x^32 + x^31 + x^30 + x^29 + x^26 + x^25 + x^23 + x^22 + x^21 + x^18 + x^17 + x^16 + x^15 + x^13 + x^11 + x^9 + x^8 + x^4 + x^2 + x, x^257 - 1) gp> q(0)*q(2) time = 30 ms. %8 = Mod(16*x^256 + 16*x^255 + 16*x^254 + 16*x^253 + 16*x^252 + 16*x^251 + 16*x^250 + 16*x^249 + 16*x^248 + 16*x^247 + 16*x^246 + 16*x^245 + 16*x^244 + 16*x^243 + 16*x^242 + 16*x^241 + 16*x^240 + 16*x^239 + 16*x^238 + 16*x^237 + 16*x^236 + 16*x^235 + 16*x^234 + 16*x^233 + 16*x^232 + 16*x^231 + 16*x^230 + 16*x^229 + 16*x^228 + 16*x^227 + 16*x^226 + 16*x^225 + 16*x^224 + 16*x^223 + 16*x^222 + 16*x^221 + 16*x^220 + 16*x^219 + 16*x^218 + 16*x^217 + 16*x^216 + 16*x^215 + 16*x^214 + 16*x^213 + 16*x^212 + 16*x^211 + 16*x^210 + 16*x^209 + 16*x^208 + 16*x^207 + 16*x^206 + 16*x^205 + 16*x^204 + 16*x^203 + 16*x^202 + 16*x^201 + 16*x^200 + 16*x^199 + 16*x^198 + 16*x^197 + 16*x^196 + 16*x^195 + 16*x^194 + 16*x^193 + 16*x^192 + 16*x^191 + 16*x^190 + 16*x^189 + 16*x^188 + 16*x^187 + 16*x^186 + 16*x^185 + 16*x^184 + 16*x^183 + 16*x^182 + 16*x^181 + 16*x^180 + 16*x^179 + 16*x^178 + 16*x^177 + 16*x^176 + 16*x^175 + 16*x^174 + 16*x^173 + 16*x^172 + 16*x^171 + 16*x^170 + 16*x^169 + 16*x^168 + 16*x^167 + 16*x^166 + 16*x^165 + 16*x^164 + 16*x^163 + 16*x^162 + 16*x^161 + 16*x^160 + 16*x^159 + 16*x^158 + 16*x^157 + 16*x^156 + 16*x^155 + 16*x^154 + 16*x^153 + 16*x^152 + 16*x^151 + 16*x^150 + 16*x^149 + 16*x^148 + 16*x^147 + 16*x^146 + 16*x^145 + 16*x^144 + 16*x^143 + 16*x^142 + 16*x^141 + 16*x^140 + 16*x^139 + 16*x^138 + 16*x^137 + 16*x^136 + 16*x^135 + 16*x^134 + 16*x^133 + 16*x^132 + 16*x^131 + 16*x^130 + 16*x^129 + 16*x^128 + 16*x^127 + 16*x^126 + 16*x^125 + 16*x^124 + 16*x^123 + 16*x^122 + 16*x^121 + 16*x^120 + 16*x^119 + 16*x^118 + 16*x^117 + 16*x^116 + 16*x^115 + 16*x^114 + 16*x^113 + 16*x^112 + 16*x^111 + 16*x^110 + 16*x^109 + 16*x^108 + 16*x^107 + 16*x^106 + 16*x^105 + 16*x^104 + 16*x^103 + 16*x^102 + 16*x^101 + 16*x^100 + 16*x^99 + 16*x^98 + 16*x^97 + 16*x^96 + 16*x^95 + 16*x^94 + 16*x^93 + 16*x^92 + 16*x^91 + 16*x^90 + 16*x^89 + 16*x^88 + 16*x^87 + 16*x^86 + 16*x^85 + 16*x^84 + 16*x^83 + 16*x^82 + 16*x^81 + 16*x^80 + 16*x^79 + 16*x^78 + 16*x^77 + 16*x^76 + 16*x^75 + 16*x^74 + 16*x^73 + 16*x^72 + 16*x^71 + 16*x^70 + 16*x^69 + 16*x^68 + 16*x^67 + 16*x^66 + 16*x^65 + 16*x^64 + 16*x^63 + 16*x^62 + 16*x^61 + 16*x^60 + 16*x^59 + 16*x^58 + 16*x^57 + 16*x^56 + 16*x^55 + 16*x^54 + 16*x^53 + 16*x^52 + 16*x^51 + 16*x^50 + 16*x^49 + 16*x^48 + 16*x^47 + 16*x^46 + 16*x^45 + 16*x^44 + 16*x^43 + 16*x^42 + 16*x^41 + 16*x^40 + 16*x^39 + 16*x^38 + 16*x^37 + 16*x^36 + 16*x^35 + 16*x^34 + 16*x^33 + 16*x^32 + 16*x^31 + 16*x^30 + 16*x^29 + 16*x^28 + 16*x^27 + 16*x^26 + 16*x^25 + 16*x^24 + 16*x^23 + 16*x^22 + 16*x^21 + 16*x^20 + 16*x^19 + 16*x^18 + 16*x^17 + 16*x^16 + 16*x^15 + 16*x^14 + 16*x^13 + 16*x^12 + 16*x^11 + 16*x^10 + 16*x^9 + 16*x^8 + 16*x^7 + 16*x^6 + 16*x^5 + 16*x^4 + 16*x^3 + 16*x^2 + 16*x, x^257 - 1) gp> q(0)+q(2)-p(0) time = 40 ms. %9 = 0 gp> qz(0)+qz(2) time = 8 ms. %10 = 7.515609770940698682435677372 - 2.82085604 E-28*I gp> qz(0)*qz(2) time = 7 ms. %11 = -16.00000000000000000000000002 + 1.013780746398037908 E-26*I gp> for(i=0,7,print("r",i,"=",r(i))) r0=Mod(x^256 + x^255 + x^253 + x^249 + x^242 + x^241 + x^240 + x^227 + x^225 + x^223 + x^197 + x^193 + x^189 + x^137 + x^136 + x^129 + x^128 + x^121 + x^120 + x^68 + x^64 + x^60 + x^34 + x^32 + x^30 + x^17 + x^16 + x^15 + x^8 + x^4 + x^2 + x, x^257 - 1) r1=Mod(x^254 + x^251 + x^245 + x^233 + x^212 + x^209 + x^206 + x^204 + x^192 + x^180 + x^167 + x^161 + x^155 + x^154 + x^151 + x^130 + x^127 + x^106 + x^103 + x^102 + x^96 + x^90 + x^77 + x^65 + x^53 + x^51 + x^48 + x^45 + x^24 + x^12 + x^6 + x^3, x^257 - 1) r2=Mod(x^248 + x^244 + x^239 + x^231 + x^226 + x^221 + x^208 + x^205 + x^196 + x^195 + x^185 + x^159 + x^153 + x^144 + x^135 + x^133 + x^124 + x^122 + x^113 + x^104 + x^98 + x^72 + x^62 + x^61 + x^52 + x^49 + x^36 + x^31 + x^26 + x^18 + x^13 + x^9, x^257 - 1) r3=Mod(x^230 + x^220 + x^218 + x^216 + x^203 + x^202 + x^186 + x^183 + x^179 + x^175 + x^164 + x^156 + x^149 + x^148 + x^147 + x^142 + x^115 + x^110 + x^109 + x^108 + x^101 + x^93 + x^82 + x^78 + x^74 + x^71 + x^55 + x^54 + x^41 + x^39 + x^37 + x^27, x^257 - 1) r4=Mod(x^246 + x^235 + x^234 + x^222 + x^213 + x^211 + x^190 + x^187 + x^184 + x^176 + x^169 + x^165 + x^162 + x^146 + x^140 + x^134 + x^123 + x^117 + x^111 + x^95 + x^92 + x^88 + x^81 + x^73 + x^70 + x^67 + x^46 + x^44 + x^35 + x^23 + x^22 + x^11, x^257 - 1) r5=Mod(x^250 + x^243 + x^238 + x^229 + x^224 + x^219 + x^210 + x^201 + x^191 + x^188 + x^181 + x^163 + x^152 + x^145 + x^138 + x^132 + x^125 + x^119 + x^112 + x^105 + x^94 + x^76 + x^69 + x^66 + x^56 + x^47 + x^38 + x^33 + x^28 + x^19 + x^14 + x^7, x^257 - 1) r6=Mod(x^236 + x^232 + x^228 + x^215 + x^207 + x^200 + x^199 + x^198 + x^178 + x^173 + x^168 + x^158 + x^157 + x^143 + x^141 + x^139 + x^118 + x^116 + x^114 + x^100 + x^99 + x^89 + x^84 + x^79 + x^59 + x^58 + x^57 + x^50 + x^42 + x^29 + x^25 + x^21, x^257 - 1) r7=Mod(x^252 + x^247 + x^237 + x^217 + x^214 + x^194 + x^182 + x^177 + x^174 + x^172 + x^171 + x^170 + x^166 + x^160 + x^150 + x^131 + x^126 + x^107 + x^97 + x^91 + x^87 + x^86 + x^85 + x^83 + x^80 + x^75 + x^63 + x^43 + x^40 + x^20 + x^10 + x^5, x^257 - 1) time = 55 ms. gp> for(i=0,7,print("r",i,"=",rz(i))) r0=11.86045563339329541159020829 - 1.82384641 E-27*I r1=0.2627705535043839856568685148 + 1.139728468299119019 E-28*I r2=2.265791367933145615251630920 - 2.526659492467212036 E-29*I r3=-6.386417324571357385656925641 + 1.217958366647583769 E-27*I r4=-2.614381662203403352846035083 + 6.449406649448573981 E-28*I r5=1.321419292513405791011347553 - 1.89326617 E-29*I r6=-3.996255568182338991560126763 + 9.043842432526102884 E-28*I r7=-3.713382292387131073446967812 + 7.855504844219766118 E-28*I time = 29 ms. gp> r(0)+r(4) time = 11 ms. %12 = Mod(x^256 + x^255 + x^253 + x^249 + x^246 + x^242 + x^241 + x^240 + x^235 + x^234 + x^227 + x^225 + x^223 + x^222 + x^213 + x^211 + x^197 + x^193 + x^190 + x^189 + x^187 + x^184 + x^176 + x^169 + x^165 + x^162 + x^146 + x^140 + x^137 + x^136 + x^134 + x^129 + x^128 + x^123 + x^121 + x^120 + x^117 + x^111 + x^95 + x^92 + x^88 + x^81 + x^73 + x^70 + x^68 + x^67 + x^64 + x^60 + x^46 + x^44 + x^35 + x^34 + x^32 + x^30 + x^23 + x^22 + x^17 + x^16 + x^15 + x^11 + x^8 + x^4 + x^2 + x, x^257 - 1) gp> r(0)*r(4) time = 18 ms. %13 = Mod(2*x^256 + 2*x^255 + 5*x^254 + 2*x^253 + 5*x^252 + 5*x^251 + 5*x^250 + 2*x^249 + 4*x^248 + 5*x^247 + 2*x^246 + 5*x^245 + 4*x^244 + 5*x^243 + 2*x^242 + 2*x^241 + 2*x^240 + 4*x^239 + 5*x^238 + 5*x^237 + 4*x^236 + 2*x^235 + 2*x^234 + 5*x^233 + 4*x^232 + 4*x^231 + 5*x^230 + 5*x^229 + 4*x^228 + 2*x^227 + 4*x^226 + 2*x^225 + 5*x^224 + 2*x^223 + 2*x^222 + 4*x^221 + 5*x^220 + 5*x^219 + 5*x^218 + 5*x^217 + 5*x^216 + 4*x^215 + 5*x^214 + 2*x^213 + 5*x^212 + 2*x^211 + 5*x^210 + 5*x^209 + 4*x^208 + 4*x^207 + 5*x^206 + 4*x^205 + 5*x^204 + 5*x^203 + 5*x^202 + 5*x^201 + 4*x^200 + 4*x^199 + 4*x^198 + 2*x^197 + 4*x^196 + 4*x^195 + 5*x^194 + 2*x^193 + 5*x^192 + 5*x^191 + 2*x^190 + 2*x^189 + 5*x^188 + 2*x^187 + 5*x^186 + 4*x^185 + 2*x^184 + 5*x^183 + 5*x^182 + 5*x^181 + 5*x^180 + 5*x^179 + 4*x^178 + 5*x^177 + 2*x^176 + 5*x^175 + 5*x^174 + 4*x^173 + 5*x^172 + 5*x^171 + 5*x^170 + 2*x^169 + 4*x^168 + 5*x^167 + 5*x^166 + 2*x^165 + 5*x^164 + 5*x^163 + 2*x^162 + 5*x^161 + 5*x^160 + 4*x^159 + 4*x^158 + 4*x^157 + 5*x^156 + 5*x^155 + 5*x^154 + 4*x^153 + 5*x^152 + 5*x^151 + 5*x^150 + 5*x^149 + 5*x^148 + 5*x^147 + 2*x^146 + 5*x^145 + 4*x^144 + 4*x^143 + 5*x^142 + 4*x^141 + 2*x^140 + 4*x^139 + 5*x^138 + 2*x^137 + 2*x^136 + 4*x^135 + 2*x^134 + 4*x^133 + 5*x^132 + 5*x^131 + 5*x^130 + 2*x^129 + 2*x^128 + 5*x^127 + 5*x^126 + 5*x^125 + 4*x^124 + 2*x^123 + 4*x^122 + 2*x^121 + 2*x^120 + 5*x^119 + 4*x^118 + 2*x^117 + 4*x^116 + 5*x^115 + 4*x^114 + 4*x^113 + 5*x^112 + 2*x^111 + 5*x^110 + 5*x^109 + 5*x^108 + 5*x^107 + 5*x^106 + 5*x^105 + 4*x^104 + 5*x^103 + 5*x^102 + 5*x^101 + 4*x^100 + 4*x^99 + 4*x^98 + 5*x^97 + 5*x^96 + 2*x^95 + 5*x^94 + 5*x^93 + 2*x^92 + 5*x^91 + 5*x^90 + 4*x^89 + 2*x^88 + 5*x^87 + 5*x^86 + 5*x^85 + 4*x^84 + 5*x^83 + 5*x^82 + 2*x^81 + 5*x^80 + 4*x^79 + 5*x^78 + 5*x^77 + 5*x^76 + 5*x^75 + 5*x^74 + 2*x^73 + 4*x^72 + 5*x^71 + 2*x^70 + 5*x^69 + 2*x^68 + 2*x^67 + 5*x^66 + 5*x^65 + 2*x^64 + 5*x^63 + 4*x^62 + 4*x^61 + 2*x^60 + 4*x^59 + 4*x^58 + 4*x^57 + 5*x^56 + 5*x^55 + 5*x^54 + 5*x^53 + 4*x^52 + 5*x^51 + 4*x^50 + 4*x^49 + 5*x^48 + 5*x^47 + 2*x^46 + 5*x^45 + 2*x^44 + 5*x^43 + 4*x^42 + 5*x^41 + 5*x^40 + 5*x^39 + 5*x^38 + 5*x^37 + 4*x^36 + 2*x^35 + 2*x^34 + 5*x^33 + 2*x^32 + 4*x^31 + 2*x^30 + 4*x^29 + 5*x^28 + 5*x^27 + 4*x^26 + 4*x^25 + 5*x^24 + 2*x^23 + 2*x^22 + 4*x^21 + 5*x^20 + 5*x^19 + 4*x^18 + 2*x^17 + 2*x^16 + 2*x^15 + 5*x^14 + 4*x^13 + 5*x^12 + 2*x^11 + 5*x^10 + 4*x^9 + 2*x^8 + 5*x^7 + 5*x^6 + 5*x^5 + 2*x^4 + 5*x^3 + 2*x^2 + 2*x, x^257 - 1) gp> r(0)+r(4)-q(0) time = 21 ms. %14 = 0 gp> r(0)*r(4)-2*q(0)-4*q(2)-5*q(1)-5*q(3) time = 57 ms. %15 = 0 gp> rz(0)+rz(4) time = 5 ms. %16 = 9.246073971189892058744173215 - 1.17890574 E-27*I gp> rz(0)*rz(4) time = 4 ms. %17 = -31.00775771332048279992402383 + 1.241752075920451167 E-26*I gp> for(i=0,15,print("s",i,"=",s(i))) s0=Mod(x^256 + x^255 + x^253 + x^249 + x^241 + x^225 + x^193 + x^129 + x^128 + x^64 + x^32 + x^16 + x^8 + x^4 + x^2 + x, x^257 - 1) s1=Mod(x^254 + x^251 + x^245 + x^233 + x^209 + x^192 + x^161 + x^130 + x^127 + x^96 + x^65 + x^48 + x^24 + x^12 + x^6 + x^3, x^257 - 1) s2=Mod(x^248 + x^239 + x^226 + x^221 + x^195 + x^185 + x^144 + x^133 + x^124 + x^113 + x^72 + x^62 + x^36 + x^31 + x^18 + x^9, x^257 - 1) s3=Mod(x^230 + x^216 + x^203 + x^186 + x^175 + x^164 + x^149 + x^142 + x^115 + x^108 + x^93 + x^82 + x^71 + x^54 + x^41 + x^27, x^257 - 1) s4=Mod(x^246 + x^235 + x^213 + x^190 + x^176 + x^169 + x^162 + x^134 + x^123 + x^95 + x^88 + x^81 + x^67 + x^44 + x^22 + x^11, x^257 - 1) s5=Mod(x^250 + x^243 + x^229 + x^224 + x^201 + x^191 + x^145 + x^132 + x^125 + x^112 + x^66 + x^56 + x^33 + x^28 + x^14 + x^7, x^257 - 1) s6=Mod(x^236 + x^215 + x^198 + x^178 + x^173 + x^168 + x^158 + x^139 + x^118 + x^99 + x^89 + x^84 + x^79 + x^59 + x^42 + x^21, x^257 - 1) s7=Mod(x^252 + x^247 + x^237 + x^217 + x^194 + x^177 + x^160 + x^131 + x^126 + x^97 + x^80 + x^63 + x^40 + x^20 + x^10 + x^5, x^257 - 1) s8=Mod(x^242 + x^240 + x^227 + x^223 + x^197 + x^189 + x^137 + x^136 + x^121 + x^120 + x^68 + x^60 + x^34 + x^30 + x^17 + x^15, x^257 - 1) s9=Mod(x^212 + x^206 + x^204 + x^180 + x^167 + x^155 + x^154 + x^151 + x^106 + x^103 + x^102 + x^90 + x^77 + x^53 + x^51 + x^45, x^257 - 1) s10=Mod(x^244 + x^231 + x^208 + x^205 + x^196 + x^159 + x^153 + x^135 + x^122 + x^104 + x^98 + x^61 + x^52 + x^49 + x^26 + x^13, x^257 - 1) s11=Mod(x^220 + x^218 + x^202 + x^183 + x^179 + x^156 + x^148 + x^147 + x^110 + x^109 + x^101 + x^78 + x^74 + x^55 + x^39 + x^37, x^257 - 1) s12=Mod(x^234 + x^222 + x^211 + x^187 + x^184 + x^165 + x^146 + x^140 + x^117 + x^111 + x^92 + x^73 + x^70 + x^46 + x^35 + x^23, x^257 - 1) s13=Mod(x^238 + x^219 + x^210 + x^188 + x^181 + x^163 + x^152 + x^138 + x^119 + x^105 + x^94 + x^76 + x^69 + x^47 + x^38 + x^19, x^257 - 1) s14=Mod(x^232 + x^228 + x^207 + x^200 + x^199 + x^157 + x^143 + x^141 + x^116 + x^114 + x^100 + x^58 + x^57 + x^50 + x^29 + x^25, x^257 - 1) s15=Mod(x^214 + x^182 + x^174 + x^172 + x^171 + x^170 + x^166 + x^150 + x^107 + x^91 + x^87 + x^86 + x^85 + x^83 + x^75 + x^43, x^257 - 1) time = 47 ms. gp> for(i=0,15,print("s",i,"=",sz(i))) s0=9.229152884143427069047448760 - 1.50199116 E-27*I s1=4.890484957292577579687509244 - 7.541321001408892943 E-28*I s2=2.375150786131144323343684994 - 2.403514934818898752 E-28*I s3=-2.955978611262725340347638558 + 5.875438104509603238 E-28*I s4=-0.7797117117494440466968254429 + 2.576456055989814407 E-28*I s5=3.270791497771093661943517517 - 4.41762106 E-28*I s6=-3.175217183647612247623080569 + 6.276803888625394920 E-28*I s7=2.686687205494066985177060846 - 3.386073808131551518 E-28*I s8=2.631302749249868342542759537 - 3.158456069366980716 E-28*I s9=-4.627714403788193594030640729 + 8.288266154870384622 E-28*I s10=-0.1093594181979987080920540741 + 2.150848985601564907 E-28*I s11=-3.430438713308632045309287082 + 6.304145561995621814 E-28*I s12=-1.834669950453959306149209640 + 3.872950593605696368 E-28*I s13=-1.949372205257687870932169963 + 4.164962236081096479 E-28*I s14=-0.8210383845347267439370461931 + 2.767038543724383811 E-28*I s15=-6.400069497881198058624028659 + 1.124157865252764179 E-27*I time = 30 ms. gp> s(0)+s(8)-r(0) time = 12 ms. %18 = 0 gp> s(0)*s(8)-2*r(0)-2*r(2)-2*r(5)-r(4)-r(6) time = 34 ms. %19 = 0 gp> sz(0)+sz(8) time = 3 ms. %20 = 11.86045563339329541159020829 - 1.81783677 E-27*I gp> sz(0)*sz(8) time = 3 ms. %21 = 24.28469535729395129130021170 - 6.867180872145896032 E-27*I gp> for(i=0,31,print("t",i,"=",t(i))) t0=Mod(x^256 + x^253 + x^241 + x^193 + x^64 + x^16 + x^4 + x, x^257 - 1) t1=Mod(x^254 + x^245 + x^209 + x^192 + x^65 + x^48 + x^12 + x^3, x^257 - 1) t2=Mod(x^248 + x^221 + x^195 + x^144 + x^113 + x^62 + x^36 + x^9, x^257 - 1) t3=Mod(x^230 + x^186 + x^175 + x^149 + x^108 + x^82 + x^71 + x^27, x^257 - 1) t4=Mod(x^246 + x^213 + x^190 + x^176 + x^81 + x^67 + x^44 + x^11, x^257 - 1) t5=Mod(x^243 + x^224 + x^201 + x^132 + x^125 + x^56 + x^33 + x^14, x^257 - 1) t6=Mod(x^215 + x^168 + x^158 + x^139 + x^118 + x^99 + x^89 + x^42, x^257 - 1) t7=Mod(x^247 + x^217 + x^160 + x^131 + x^126 + x^97 + x^40 + x^10, x^257 - 1) t8=Mod(x^227 + x^223 + x^137 + x^136 + x^121 + x^120 + x^34 + x^30, x^257 - 1) t9=Mod(x^167 + x^155 + x^154 + x^151 + x^106 + x^103 + x^102 + x^90, x^257 - 1) t10=Mod(x^244 + x^208 + x^205 + x^196 + x^61 + x^52 + x^49 + x^13, x^257 - 1) t11=Mod(x^218 + x^183 + x^156 + x^147 + x^110 + x^101 + x^74 + x^39, x^257 - 1) t12=Mod(x^222 + x^211 + x^184 + x^140 + x^117 + x^73 + x^46 + x^35, x^257 - 1) t13=Mod(x^219 + x^163 + x^152 + x^138 + x^119 + x^105 + x^94 + x^38, x^257 - 1) t14=Mod(x^232 + x^199 + x^157 + x^143 + x^114 + x^100 + x^58 + x^25, x^257 - 1) t15=Mod(x^214 + x^182 + x^174 + x^172 + x^85 + x^83 + x^75 + x^43, x^257 - 1) t16=Mod(x^255 + x^249 + x^225 + x^129 + x^128 + x^32 + x^8 + x^2, x^257 - 1) t17=Mod(x^251 + x^233 + x^161 + x^130 + x^127 + x^96 + x^24 + x^6, x^257 - 1) t18=Mod(x^239 + x^226 + x^185 + x^133 + x^124 + x^72 + x^31 + x^18, x^257 - 1) t19=Mod(x^216 + x^203 + x^164 + x^142 + x^115 + x^93 + x^54 + x^41, x^257 - 1) t20=Mod(x^235 + x^169 + x^162 + x^134 + x^123 + x^95 + x^88 + x^22, x^257 - 1) t21=Mod(x^250 + x^229 + x^191 + x^145 + x^112 + x^66 + x^28 + x^7, x^257 - 1) t22=Mod(x^236 + x^198 + x^178 + x^173 + x^84 + x^79 + x^59 + x^21, x^257 - 1) t23=Mod(x^252 + x^237 + x^194 + x^177 + x^80 + x^63 + x^20 + x^5, x^257 - 1) t24=Mod(x^242 + x^240 + x^197 + x^189 + x^68 + x^60 + x^17 + x^15, x^257 - 1) t25=Mod(x^212 + x^206 + x^204 + x^180 + x^77 + x^53 + x^51 + x^45, x^257 - 1) t26=Mod(x^231 + x^159 + x^153 + x^135 + x^122 + x^104 + x^98 + x^26, x^257 - 1) t27=Mod(x^220 + x^202 + x^179 + x^148 + x^109 + x^78 + x^55 + x^37, x^257 - 1) t28=Mod(x^234 + x^187 + x^165 + x^146 + x^111 + x^92 + x^70 + x^23, x^257 - 1) t29=Mod(x^238 + x^210 + x^188 + x^181 + x^76 + x^69 + x^47 + x^19, x^257 - 1) t30=Mod(x^228 + x^207 + x^200 + x^141 + x^116 + x^57 + x^50 + x^29, x^257 - 1) t31=Mod(x^171 + x^170 + x^166 + x^150 + x^107 + x^91 + x^87 + x^86, x^257 - 1) time = 35 ms. gp> for(i=0,31,print("t",i,"=",tz(i))) t0=5.850996926528757744956571485 - 1.02236373 E-27*I t1=4.646326491323420060756151513 - 7.732900704259457004 E-28*I t2=1.477726466821652373187993536 - 2.119802298006216780 E-28*I t3=-1.343644735395402050077960105 + 2.524178703739783985 E-28*I t4=1.947629842428899310868544856 - 3.448000185688740646 E-28*I t5=1.675609602883502031074231545 - 1.786123382911620745 E-28*I t6=-3.539061123412796019284308189 + 6.619204815256632158 E-28*I t7=-0.3739118920875578876206685976 + 1.343572756346275581 E-28*I t8=-1.089776200162236740337305012 + 2.849582851394978096 E-28*I t9=-6.101004686556759115061340311 + 1.063943714603692717 E-27*I t10=3.377160533457308701889367978 - 5.398803943569717014 E-28*I t11=-2.678186347946591784930632329 + 4.808981171481640247 E-28*I t12=-0.1716144915814787933891082077 + 7.885923755119151528 E-29*I t13=-3.757731610736872276586709272 + 7.023172885403323997 E-28*I t14=-1.467145718886429248236015344 + 3.194204458594643290 E-28*I t15=-1.383343866423168625687100561 + 2.516641067178686662 E-28*I t16=3.378155957614669324090877275 - 4.92249204 E-28*I t17=0.2441584659691575189313577311 + 1.915797029975008540 E-29*I t18=0.8974243193094919501556914577 - 2.837126368420693306 E-29*I t19=-1.612333875867323290269678452 + 3.351259400828593970 E-28*I t20=-2.727341554178343357565370299 + 6.024456241590392978 E-28*I t21=1.595181894887591630869285971 - 2.65057264 E-28*I t22=0.3638439397651837716612276199 - 3.424009266606245964 E-29*I t23=3.060599097581624872797729443 - 4.729646564565989176 E-28*I t24=3.721078949412105082880064550 - 6.008038920644409378 E-28*I t25=1.473290282768565521030699581 - 2.351170991048993117 E-28*I t26=-3.486519951655307409981422052 + 7.549652928994957769 E-28*I t27=-0.7522523653620402603786547537 + 1.495164390455206849 E-28*I t28=-1.663055458872480512760101432 + 3.084358218137862253 E-28*I t29=1.808359405479184405654539308 - 2.858210649263452800 E-28*I t30=0.6461073343517025042989691512 - 4.271659146939353268 E-29*I t31=-5.016725631458029432936928097 + 8.724937585378342485 E-28*I time = 22 ms. gp> t(0)+t(16)-s(0) time = 7 ms. %22 = 0 gp> t(0)*t(16)-s(0)-s(1)-s(2)-s(5) time = 16 ms. %23 = 0 gp> sz(0)+sz(16) time = 3 ms. %24 = 18.45830576828685413809489752 - 3.00832106 E-27*I gp> sz(0)*sz(16) time = 2 ms. %25 = 85.17726295889293815190642905 - 2.776425500631093429 E-26*I gp> for(i=0,63,print("u",i,"=",u(i))) u0=Mod(x^256 + x^241 + x^16 + x, x^257 - 1) u1=Mod(x^254 + x^209 + x^48 + x^3, x^257 - 1) u2=Mod(x^248 + x^144 + x^113 + x^9, x^257 - 1) u3=Mod(x^230 + x^175 + x^82 + x^27, x^257 - 1) u4=Mod(x^246 + x^176 + x^81 + x^11, x^257 - 1) u5=Mod(x^243 + x^224 + x^33 + x^14, x^257 - 1) u6=Mod(x^215 + x^158 + x^99 + x^42, x^257 - 1) u7=Mod(x^217 + x^131 + x^126 + x^40, x^257 - 1) u8=Mod(x^137 + x^136 + x^121 + x^120, x^257 - 1) u9=Mod(x^154 + x^151 + x^106 + x^103, x^257 - 1) u10=Mod(x^205 + x^196 + x^61 + x^52, x^257 - 1) u11=Mod(x^183 + x^156 + x^101 + x^74, x^257 - 1) u12=Mod(x^222 + x^211 + x^46 + x^35, x^257 - 1) u13=Mod(x^152 + x^138 + x^119 + x^105, x^257 - 1) u14=Mod(x^199 + x^157 + x^100 + x^58, x^257 - 1) u15=Mod(x^214 + x^174 + x^83 + x^43, x^257 - 1) u16=Mod(x^249 + x^129 + x^128 + x^8, x^257 - 1) u17=Mod(x^233 + x^130 + x^127 + x^24, x^257 - 1) u18=Mod(x^185 + x^133 + x^124 + x^72, x^257 - 1) u19=Mod(x^216 + x^142 + x^115 + x^41, x^257 - 1) u20=Mod(x^169 + x^134 + x^123 + x^88, x^257 - 1) u21=Mod(x^250 + x^145 + x^112 + x^7, x^257 - 1) u22=Mod(x^236 + x^178 + x^79 + x^21, x^257 - 1) u23=Mod(x^237 + x^194 + x^63 + x^20, x^257 - 1) u24=Mod(x^197 + x^189 + x^68 + x^60, x^257 - 1) u25=Mod(x^204 + x^180 + x^77 + x^53, x^257 - 1) u26=Mod(x^231 + x^159 + x^98 + x^26, x^257 - 1) u27=Mod(x^220 + x^179 + x^78 + x^37, x^257 - 1) u28=Mod(x^234 + x^146 + x^111 + x^23, x^257 - 1) u29=Mod(x^188 + x^181 + x^76 + x^69, x^257 - 1) u30=Mod(x^228 + x^207 + x^50 + x^29, x^257 - 1) u31=Mod(x^170 + x^150 + x^107 + x^87, x^257 - 1) u32=Mod(x^253 + x^193 + x^64 + x^4, x^257 - 1) u33=Mod(x^245 + x^192 + x^65 + x^12, x^257 - 1) u34=Mod(x^221 + x^195 + x^62 + x^36, x^257 - 1) u35=Mod(x^186 + x^149 + x^108 + x^71, x^257 - 1) u36=Mod(x^213 + x^190 + x^67 + x^44, x^257 - 1) u37=Mod(x^201 + x^132 + x^125 + x^56, x^257 - 1) u38=Mod(x^168 + x^139 + x^118 + x^89, x^257 - 1) u39=Mod(x^247 + x^160 + x^97 + x^10, x^257 - 1) u40=Mod(x^227 + x^223 + x^34 + x^30, x^257 - 1) u41=Mod(x^167 + x^155 + x^102 + x^90, x^257 - 1) u42=Mod(x^244 + x^208 + x^49 + x^13, x^257 - 1) u43=Mod(x^218 + x^147 + x^110 + x^39, x^257 - 1) u44=Mod(x^184 + x^140 + x^117 + x^73, x^257 - 1) u45=Mod(x^219 + x^163 + x^94 + x^38, x^257 - 1) u46=Mod(x^232 + x^143 + x^114 + x^25, x^257 - 1) u47=Mod(x^182 + x^172 + x^85 + x^75, x^257 - 1) u48=Mod(x^255 + x^225 + x^32 + x^2, x^257 - 1) u49=Mod(x^251 + x^161 + x^96 + x^6, x^257 - 1) u50=Mod(x^239 + x^226 + x^31 + x^18, x^257 - 1) u51=Mod(x^203 + x^164 + x^93 + x^54, x^257 - 1) u52=Mod(x^235 + x^162 + x^95 + x^22, x^257 - 1) u53=Mod(x^229 + x^191 + x^66 + x^28, x^257 - 1) u54=Mod(x^198 + x^173 + x^84 + x^59, x^257 - 1) u55=Mod(x^252 + x^177 + x^80 + x^5, x^257 - 1) u56=Mod(x^242 + x^240 + x^17 + x^15, x^257 - 1) u57=Mod(x^212 + x^206 + x^51 + x^45, x^257 - 1) u58=Mod(x^153 + x^135 + x^122 + x^104, x^257 - 1) u59=Mod(x^202 + x^148 + x^109 + x^55, x^257 - 1) u60=Mod(x^187 + x^165 + x^92 + x^70, x^257 - 1) u61=Mod(x^238 + x^210 + x^47 + x^19, x^257 - 1) u62=Mod(x^200 + x^141 + x^116 + x^57, x^257 - 1) u63=Mod(x^171 + x^166 + x^91 + x^86, x^257 - 1) time = 50 ms. gp> for(i=0,63,print("u",i,"=",uz(i))) u0=3.848328712907940028800785176 - 6.87886709 E-28*I u1=2.768451971950275988963438490 - 4.389887481055024074 E-28*I u2=0.09367075801054879502055962542 + 1.405498240263271856 E-29*I u3=0.7389346641704208702351523728 - 1.056987099198022870 E-28*I u4=1.131796765925932306486917280 - 1.670831878785239952 E-28*I u5=3.267626496053133066230298847 - 5.55358077 E-28*I u6=-0.4669212974136347608917038582 + 9.226369185416683446 E-29*I u7=-0.8787806287283869954795923625 + 1.951758374521677804 E-28*I u8=-3.923443021881976030039747301 + 7.529531072301481598 E-28*I u9=-3.328723633550742048443208863 + 5.816374044235596459 E-28*I u10=0.7488126498102029646913781962 - 1.221947140083838133 E-28*I u11=-2.036988978045581542689463650 + 3.556406404129588515 E-28*I u12=2.174444782095192329712809656 - 3.644636665373115189 E-28*I u13=-3.625191259297431609955718724 + 6.667912757869041824 E-28*I u14=-1.229419008617896542146283947 + 2.174737961729113412 E-28*I u15=0.1078999703660595693092701137 - 8.45848952 E-30*I u16=-0.03798248470002941660226053399 + 6.31088724 E-29*I u17=-0.3331736857088084801394373345 + 8.99301431 E-29*I u18=-2.364592154607418704992108025 + 4.92249204 E-28*I u19=-0.8154487771032940759720799774 + 1.906764485465542003 E-28*I u20=-3.079072316480455281012259816 + 6.386950153826107871 E-28*I u21=0.1313163259395793723135794547 + 9.683034312252669768 E-30*I u22=1.036455828943313992309321531 - 1.540806367059914447 E-28*I u23=1.826751026276906774011104484 - 2.897069840380670659 E-28*I u24=0.02433122927361329920628738294 - 8.09799723 E-30*I u25=-0.07020680189013733502522064785 + 1.814933035138701131 E-29*I u26=0.1401011798500125219668596047 - 7.06252616 E-31*I u27=0.5762928662996187959722244525 - 8.784747116486748797 E-29*I u28=-0.1276720374016243530562134848 + 4.758508839737249801 E-29*I u29=-0.7983992689010474880968663478 + 1.330238129515452296 E-28*I u30=2.200793640773421410349536096 - 3.539186954961476327 E-28*I u31=-2.785929292519799957123478762 + 4.855807243852596046 E-28*I u32=2.002668213620817716155786309 - 3.15544362 E-28*I u33=1.877874519373144071792713022 - 3.28166136 E-28*I u34=1.384055708811103578167433911 - 2.260352122003156607 E-28*I u35=-2.082579399565822920313112477 + 3.581165802908419497 E-28*I u36=0.8158330765029670043816275756 - 1.64083068 E-28*I u37=-1.592016893169631035156067301 + 3.779598977248271293 E-28*I u38=-3.072139825999161258392604331 + 5.696567896685576454 E-28*I u39=0.5048687366408291078589237648 - 6.081856180872401462 E-29*I u40=2.833666821719739289702442289 - 4.679948220884462982 E-28*I u41=-2.772281053006017066618131447 + 4.823063101830718074 E-28*I u42=2.628347883647105737197989782 - 4.176856803456491522 E-28*I u43=-0.6411973699010102422411686791 + 1.252574767322664373 E-28*I u44=-2.346059273676671123101917864 + 4.433229040826255624 E-28*I u45=-0.1325403514394406666309905483 + 3.552601274755074556 E-29*I u46=-0.2377267102685327060897313970 + 1.019466496836142519 E-28*I u47=-1.491243836789228194996370675 + 2.601225962483260031 E-28*I u48=3.416138442314698740693137809 - 5.55358077 E-28*I u49=0.5773321516779659990707950656 - 7.082824800498637096 E-29*I u50=3.262016473916910655147799482 - 5.213108978380170976 E-28*I u51=-0.7968850987640292142975984754 + 1.444494915348358287 E-28*I u52=0.3517307623021119234468895178 - 3.624939122357148928 E-29*I u53=1.463865568948012258555706516 - 2.77679038 E-28*I u54=-0.6726118891781302206480939111 + 1.198405440369902491 E-28*I u55=1.233848071304718098786624959 - 1.832576724185318517 E-28*I u56=3.696747720138491783673777167 - 5.927058948307487197 E-28*I u57=1.543497084658702856055920229 - 2.532664294621637948 E-28*I u58=-3.626621131505319931948281657 + 7.556715455189735220 E-28*I u59=-1.328545231661659056350879206 + 2.373639102103881728 E-28*I u60=-1.535383421470856159703887948 + 2.608507334164137273 E-28*I u61=2.606758674380231893751405656 - 4.188448778778905097 E-28*I u62=-1.554686306421718906050566945 + 3.112021040267541001 E-28*I u63=-2.230796338938229475813449335 + 3.869130341496359080 E-28*I time = 24 ms. gp> u(0)+u(32)-t(0) time = 4 ms. %26 = 0 gp> u(0)*u(32)-t(1)-t(23) time = 8 ms. %27 = 0 gp> uz(0)+uz(32) time = 3 ms. %28 = 5.850996926528757744956571485 - 1.00343107 E-27*I gp> uz(0)*uz(32) time = 2 ms. %29 = 7.706925588905044933553880956 - 2.591927276222695820 E-27*I gp> for(i=0,127,print("v",i,"=",v(i))) v0=Mod(x^256 + x, x^257 - 1) v1=Mod(x^254 + x^3, x^257 - 1) v2=Mod(x^248 + x^9, x^257 - 1) v3=Mod(x^230 + x^27, x^257 - 1) v4=Mod(x^176 + x^81, x^257 - 1) v5=Mod(x^243 + x^14, x^257 - 1) v6=Mod(x^215 + x^42, x^257 - 1) v7=Mod(x^131 + x^126, x^257 - 1) v8=Mod(x^136 + x^121, x^257 - 1) v9=Mod(x^151 + x^106, x^257 - 1) v10=Mod(x^196 + x^61, x^257 - 1) v11=Mod(x^183 + x^74, x^257 - 1) v12=Mod(x^222 + x^35, x^257 - 1) v13=Mod(x^152 + x^105, x^257 - 1) v14=Mod(x^199 + x^58, x^257 - 1) v15=Mod(x^174 + x^83, x^257 - 1) v16=Mod(x^249 + x^8, x^257 - 1) v17=Mod(x^233 + x^24, x^257 - 1) v18=Mod(x^185 + x^72, x^257 - 1) v19=Mod(x^216 + x^41, x^257 - 1) v20=Mod(x^134 + x^123, x^257 - 1) v21=Mod(x^145 + x^112, x^257 - 1) v22=Mod(x^178 + x^79, x^257 - 1) v23=Mod(x^237 + x^20, x^257 - 1) v24=Mod(x^197 + x^60, x^257 - 1) v25=Mod(x^180 + x^77, x^257 - 1) v26=Mod(x^231 + x^26, x^257 - 1) v27=Mod(x^179 + x^78, x^257 - 1) v28=Mod(x^234 + x^23, x^257 - 1) v29=Mod(x^188 + x^69, x^257 - 1) v30=Mod(x^207 + x^50, x^257 - 1) v31=Mod(x^150 + x^107, x^257 - 1) v32=Mod(x^193 + x^64, x^257 - 1) v33=Mod(x^192 + x^65, x^257 - 1) v34=Mod(x^195 + x^62, x^257 - 1) v35=Mod(x^186 + x^71, x^257 - 1) v36=Mod(x^213 + x^44, x^257 - 1) v37=Mod(x^132 + x^125, x^257 - 1) v38=Mod(x^139 + x^118, x^257 - 1) v39=Mod(x^160 + x^97, x^257 - 1) v40=Mod(x^223 + x^34, x^257 - 1) v41=Mod(x^155 + x^102, x^257 - 1) v42=Mod(x^208 + x^49, x^257 - 1) v43=Mod(x^147 + x^110, x^257 - 1) v44=Mod(x^184 + x^73, x^257 - 1) v45=Mod(x^219 + x^38, x^257 - 1) v46=Mod(x^143 + x^114, x^257 - 1) v47=Mod(x^172 + x^85, x^257 - 1) v48=Mod(x^255 + x^2, x^257 - 1) v49=Mod(x^251 + x^6, x^257 - 1) v50=Mod(x^239 + x^18, x^257 - 1) v51=Mod(x^203 + x^54, x^257 - 1) v52=Mod(x^162 + x^95, x^257 - 1) v53=Mod(x^229 + x^28, x^257 - 1) v54=Mod(x^173 + x^84, x^257 - 1) v55=Mod(x^252 + x^5, x^257 - 1) v56=Mod(x^242 + x^15, x^257 - 1) v57=Mod(x^212 + x^45, x^257 - 1) v58=Mod(x^135 + x^122, x^257 - 1) v59=Mod(x^148 + x^109, x^257 - 1) v60=Mod(x^187 + x^70, x^257 - 1) v61=Mod(x^210 + x^47, x^257 - 1) v62=Mod(x^141 + x^116, x^257 - 1) v63=Mod(x^166 + x^91, x^257 - 1) v64=Mod(x^241 + x^16, x^257 - 1) v65=Mod(x^209 + x^48, x^257 - 1) v66=Mod(x^144 + x^113, x^257 - 1) v67=Mod(x^175 + x^82, x^257 - 1) v68=Mod(x^246 + x^11, x^257 - 1) v69=Mod(x^224 + x^33, x^257 - 1) v70=Mod(x^158 + x^99, x^257 - 1) v71=Mod(x^217 + x^40, x^257 - 1) v72=Mod(x^137 + x^120, x^257 - 1) v73=Mod(x^154 + x^103, x^257 - 1) v74=Mod(x^205 + x^52, x^257 - 1) v75=Mod(x^156 + x^101, x^257 - 1) v76=Mod(x^211 + x^46, x^257 - 1) v77=Mod(x^138 + x^119, x^257 - 1) v78=Mod(x^157 + x^100, x^257 - 1) v79=Mod(x^214 + x^43, x^257 - 1) v80=Mod(x^129 + x^128, x^257 - 1) v81=Mod(x^130 + x^127, x^257 - 1) v82=Mod(x^133 + x^124, x^257 - 1) v83=Mod(x^142 + x^115, x^257 - 1) v84=Mod(x^169 + x^88, x^257 - 1) v85=Mod(x^250 + x^7, x^257 - 1) v86=Mod(x^236 + x^21, x^257 - 1) v87=Mod(x^194 + x^63, x^257 - 1) v88=Mod(x^189 + x^68, x^257 - 1) v89=Mod(x^204 + x^53, x^257 - 1) v90=Mod(x^159 + x^98, x^257 - 1) v91=Mod(x^220 + x^37, x^257 - 1) v92=Mod(x^146 + x^111, x^257 - 1) v93=Mod(x^181 + x^76, x^257 - 1) v94=Mod(x^228 + x^29, x^257 - 1) v95=Mod(x^170 + x^87, x^257 - 1) v96=Mod(x^253 + x^4, x^257 - 1) v97=Mod(x^245 + x^12, x^257 - 1) v98=Mod(x^221 + x^36, x^257 - 1) v99=Mod(x^149 + x^108, x^257 - 1) v100=Mod(x^190 + x^67, x^257 - 1) v101=Mod(x^201 + x^56, x^257 - 1) v102=Mod(x^168 + x^89, x^257 - 1) v103=Mod(x^247 + x^10, x^257 - 1) v104=Mod(x^227 + x^30, x^257 - 1) v105=Mod(x^167 + x^90, x^257 - 1) v106=Mod(x^244 + x^13, x^257 - 1) v107=Mod(x^218 + x^39, x^257 - 1) v108=Mod(x^140 + x^117, x^257 - 1) v109=Mod(x^163 + x^94, x^257 - 1) v110=Mod(x^232 + x^25, x^257 - 1) v111=Mod(x^182 + x^75, x^257 - 1) v112=Mod(x^225 + x^32, x^257 - 1) v113=Mod(x^161 + x^96, x^257 - 1) v114=Mod(x^226 + x^31, x^257 - 1) v115=Mod(x^164 + x^93, x^257 - 1) v116=Mod(x^235 + x^22, x^257 - 1) v117=Mod(x^191 + x^66, x^257 - 1) v118=Mod(x^198 + x^59, x^257 - 1) v119=Mod(x^177 + x^80, x^257 - 1) v120=Mod(x^240 + x^17, x^257 - 1) v121=Mod(x^206 + x^51, x^257 - 1) v122=Mod(x^153 + x^104, x^257 - 1) v123=Mod(x^202 + x^55, x^257 - 1) v124=Mod(x^165 + x^92, x^257 - 1) v125=Mod(x^238 + x^19, x^257 - 1) v126=Mod(x^200 + x^57, x^257 - 1) v127=Mod(x^171 + x^86, x^257 - 1) time = 71 ms. gp> for(i=0,127,print("v",i,"=",vz(i))) v0=1.999402315686187320311568298 - 3.88513995 E-28*I v1=1.994622984321411050382162600 - 3.146459049349635819 E-28*I v2=1.951780177216468660609469021 - 3.092934489056355227 E-28*I v3=1.579860384419790809298828491 - 2.514945750006598124 E-28*I v4=-0.7963146698708980329361114820 + 1.388696676633239985 E-28*I v5=1.883987297533878777371663191 - 2.979537701745112255 E-28*I v6=1.035077951776560459861729510 - 1.697838641354677457 E-28*I v7=-1.996265449786201020335784766 + 3.77075512 E-28*I v8=-1.966472677182336713402808410 + 3.772541717613486992 E-28*I v9=-1.704960895453805582168799229 + 2.978344059759853667 E-28*I v10=0.1587460872199973246578672442 - 2.461811770560049681 E-29*I v11=-0.4722378094303350775959508945 + 8.333365004948518656 E-29*I v12=1.311400359789664587654990968 - 2.250453352047842960 E-28*I v13=-1.678892897558113257250961872 + 2.919184198547658474 E-28*I v14=0.3044145744211150585267478724 - 4.906739313024510463 E-29*I v15=-0.8850341625157671670782021683 + 1.540511007265313771 E-28*I v16=1.961868088639435693823350184 - 3.09233474 E-28*I v17=1.665481608313002338025009708 - 2.660529916321951478 E-28*I v18=-0.3766836614376579705424840618 + 6.415025790058589182 E-29*I v19=1.076603120815943975840679018 - 1.754675762287522120 E-28*I v20=-1.981946375610811105837800115 + 4.48072994 E-28*I v21=-1.839467096340473900149261811 + 3.199823928440532436 E-28*I v22=-0.7056916825425993209823271008 + 1.248953763562906577 E-28*I v23=1.765640059881349096950743847 - 2.830030829348693774 E-28*I v24=0.2074359064876683382028391479 - 3.273607999085114152 E-29*I v25=-0.6133818239099227936345538525 + 1.077531181611861983 E-28*I v26=1.609368373800791960881986086 - 2.564113699910647350 E-28*I v27=-0.6597339095307694845383269506 + 1.165184781796587476 E-28*I v28=1.692053315444146323149561256 - 2.708459133100290620 E-28*I v29=-0.2317361393065001574944268870 + 3.366195914189513737 E-29*I v30=0.6827638075945358714463135548 - 1.124540770779662295 E-28*I v31=-1.730009864966621147384716830 + 3.022164679602504890 E-28*I v32=0.01222401981898301629178180804 - 1.26217744 E-29*I v33=-0.03667023286248918593786591622 - 2.52435489 E-29*I v34=0.1099613879061157792113436661 - 1.507836287383095150 E-29*I v35=-0.3285545648454179493189287954 + 5.277995081118283160 E-29*I v36=0.9501968528312203501883486708 - 1.562199134560239684 E-28*I v37=-1.992682469005047796569643978 + 4.41762106 E-28*I v38=-1.934463106778186481651636738 + 3.729268211655062558 E-28*I v39=-1.435656980756739704106654243 + 2.471633787728446020 E-28*I v40=1.347922595250166789414515605 - 2.316266789819078728 E-28*I v41=-1.594733526962979937276995218 + 2.785153897528279937 E-28*I v42=0.7285141083391731824703627222 - 1.166469119930104520 E-28*I v43=-1.798895988052224291387942110 + 3.147357590112316713 E-28*I v44=-0.4245876201141871774089722010 + 7.280637968747932286 E-29*I v45=1.197220476940422477585977281 - 1.964206749523677798 E-28*I v46=-1.875641179218158864024287145 + 3.632808708575297521 E-28*I v47=-0.9716380871738309900314873391 + 1.682502652401678059 E-28*I v48=1.997609619971288258980045394 - 3.14755501 E-28*I v49=1.978520849583251992910992077 - 3.115481199732029402 E-28*I v50=1.809445860175149810485463430 - 2.906116393917531517 E-28*I v51=0.4959588342590491945332602264 - 8.027533397975538135 E-29*I v52=-1.365882946548402680580995190 + 2.389243146527475619 E-28*I v53=1.549408137269007878697235548 - 2.467056285479080556 E-28*I v54=-0.9286136337460403791543604014 + 1.606117629383311911 E-28*I v55=1.985075746010103467347859059 - 3.140957059551601424 E-28*I v56=1.867014790104666658874451544 - 2.950769526557020724 E-28*I v57=0.9068916550266425682669634578 - 1.487616194545905524 E-28*I v58=-1.974799679792341002071791099 + 4.67005655 E-28*I v59=-1.776991451344438530455298045 + 3.094366503847216304 E-28*I v60=-0.2802290963435382708957455890 + 4.336422049876137690 E-29*I v61=0.8186813614710773759518376748 - 1.318384776794013326 E-28*I v62=-1.907331766880011401529852065 + 3.680997973312632316 E-28*I v63=-1.216714531180014630729642940 + 2.111617623128111524 E-28*I v64=1.848926397221752708489216877 - 2.96611700 E-28*I v65=0.7738289876288649385812758894 - 1.243428431712735095 E-28*I v66=-1.858109419205919865588909396 + 3.233484313060641893 E-28*I v67=-0.8409257202493699390636761186 + 1.457958650808575253 E-28*I v68=1.928111435796830339423028762 - 3.059528555433173616 E-28*I v69=1.383639198519254288858635656 - 2.52435489 E-28*I v70=-1.501999249190195220753433368 + 2.620475559925733160 E-28*I v71=1.117484821057814024856192403 - 1.825446461098357770 E-28*I v72=-1.956970344699639316636938891 + 3.756989354680647766 E-28*I v73=-1.623762738096936466274409634 + 2.838029984446355433 E-28*I v74=0.5900665625902056400335109519 - 9.757659630572205239 E-29*I v75=-1.564751168615246465093512755 + 2.723069903664124008 E-28*I v76=0.8630444223055277420578186875 - 1.394183313325272228 E-28*I v77=-1.946298361739318352704756851 + 3.748728559321383349 E-28*I v78=-1.533833583039011600673031819 + 2.665411893060951817 E-28*I v79=0.9929341328818267363874722821 - 1.625095902569887140 E-28*I v80=-1.999850573339465110425610718 + 3.73328423 E-28*I v81=-1.998655294021810818164447042 + 3.55776268 E-28*I v82=-1.987908493169760734449623963 + 4.27562610 E-28*I v83=-1.892051897919238051812758996 + 3.661440247723676766 E-28*I v84=-1.097125940869644175174459701 + 1.892580512523678087 E-28*I v85=1.970783422280053272462841265 - 3.102993585318005739 E-28*I v86=1.742147511485913313291648631 - 2.789760130622821024 E-28*I v87=0.06111096639555767706036063682 - 6.70390110 E-30*I v88=-0.1831046772140550389965517650 + 2.463808275422018761 E-29*I v89=0.5431750220197854586093332046 - 8.960378781273792286 E-29*I v90=-1.469267193950779438915126482 + 2.557051173745257257 E-28*I v91=1.236026775830388280510551403 - 2.043659493445262356 E-28*I v92=-1.819725352845770676205774741 + 3.184310017059321921 E-28*I v93=-0.5666631295945473306024394607 + 9.936185380965009225 E-29*I v94=1.518029833178885538903222541 - 2.414646184181814032 E-28*I v95=-1.055919427553178809738761931 + 1.833642564250091156 E-28*I v96=1.990444193801834699864004501 - 3.13966640 E-28*I v97=1.914544752235633257730578939 - 3.033720947168122406 E-28*I v98=1.274094320904987798956090245 - 2.109568493235459733 E-28*I v99=-1.754024834720404970994183682 + 3.053366294796591181 E-28*I v100=-0.1343637763282533458067210951 - 1.26217744 E-29*I v101=0.4006655758354167614135766762 - 6.506444772715506357 E-29*I v102=-1.137676719220974776740967592 + 1.967299685045207575 E-28*I v103=1.940525717397568811965578008 - 3.079819405808339326 E-28*I v104=1.485744226469572500287926683 - 2.363681431065384254 E-28*I v105=-1.177547526043037129341136229 + 2.037909204302438136 E-28*I v106=1.899833775307932554727627060 - 3.010387683526387001 E-28*I v107=1.157698618151214049146773430 - 1.894782822760264981 E-28*I v108=-1.921471653562483945692945663 + 3.705165243980849754 E-28*I v109=-1.329760828379863144216967829 + 2.319466876999185253 E-28*I v110=1.637914468949626157934555748 - 2.613342211724461322 E-28*I v111=-0.5196057496153972049648833365 + 9.187233100815819719 E-29*I v112=1.418528822343410481713092414 - 2.39813715 E-28*I v113=-1.401188697905285993840197011 + 2.407198719704206211 E-28*I v114=1.452570613741760844662336052 - 2.306992584462639459 E-28*I v115=-1.292843933023078408830858701 + 2.247248255145912100 E-28*I v116=1.717613708850514604027884708 - 2.751737058763190512 E-28*I v117=-0.08554256832099562014152903217 - 2.52435489 E-29*I v118=0.2560017445679101585062664902 - 4.077121890134094198 E-29*I v119=-0.7512276747053853685612340999 + 1.308380335362609487 E-28*I v120=1.829732930033825124799325622 - 2.976289421765160152 E-28*I v121=0.6366054296320602877889567718 - 1.045048100105119782 E-28*I v122=-1.651821451712978929876490557 + 2.870944530890080724 E-28*I v123=0.4484462196827794741044188394 - 7.207274017139472166 E-29*I v124=-1.255154325127317888808142359 + 2.174865129176523504 E-28*I v125=1.788077312909154517799567981 - 2.870064001984891770 E-28*I v126=0.3526454604582924954792851198 - 5.689769330450913155 E-29*I v127=-1.014081807758214845083806394 + 1.757512718397634914 E-28*I time = 20 ms. gp> v(0)+v(64)-u(0) time = 3 ms. %30 = 0 gp> v(0)*v(64)-u(56) time = 5 ms. %31 = 0 gp> vz(0)+vz(64) time = 2 ms. %32 = 3.848328712907940028800785176 - 6.85125696 E-28*I gp> vz(0)*vz(64) time = 1 ms. %33 = 3.696747720138491783673777166 - 1.26217744 E-27*I gp> for(i=0,256,print("w",i,"=",w(i))) w0=Mod(x, x^257 - 1) w1=Mod(x^3, x^257 - 1) w2=Mod(x^9, x^257 - 1) w3=Mod(x^27, x^257 - 1) w4=Mod(x^81, x^257 - 1) w5=Mod(x^243, x^257 - 1) w6=Mod(x^215, x^257 - 1) w7=Mod(x^131, x^257 - 1) w8=Mod(x^136, x^257 - 1) w9=Mod(x^151, x^257 - 1) w10=Mod(x^196, x^257 - 1) w11=Mod(x^74, x^257 - 1) w12=Mod(x^222, x^257 - 1) w13=Mod(x^152, x^257 - 1) w14=Mod(x^199, x^257 - 1) w15=Mod(x^83, x^257 - 1) w16=Mod(x^249, x^257 - 1) w17=Mod(x^233, x^257 - 1) w18=Mod(x^185, x^257 - 1) w19=Mod(x^41, x^257 - 1) w20=Mod(x^123, x^257 - 1) w21=Mod(x^112, x^257 - 1) w22=Mod(x^79, x^257 - 1) w23=Mod(x^237, x^257 - 1) w24=Mod(x^197, x^257 - 1) w25=Mod(x^77, x^257 - 1) w26=Mod(x^231, x^257 - 1) w27=Mod(x^179, x^257 - 1) w28=Mod(x^23, x^257 - 1) w29=Mod(x^69, x^257 - 1) w30=Mod(x^207, x^257 - 1) w31=Mod(x^107, x^257 - 1) w32=Mod(x^64, x^257 - 1) w33=Mod(x^192, x^257 - 1) w34=Mod(x^62, x^257 - 1) w35=Mod(x^186, x^257 - 1) w36=Mod(x^44, x^257 - 1) w37=Mod(x^132, x^257 - 1) w38=Mod(x^139, x^257 - 1) w39=Mod(x^160, x^257 - 1) w40=Mod(x^223, x^257 - 1) w41=Mod(x^155, x^257 - 1) w42=Mod(x^208, x^257 - 1) w43=Mod(x^110, x^257 - 1) w44=Mod(x^73, x^257 - 1) w45=Mod(x^219, x^257 - 1) w46=Mod(x^143, x^257 - 1) w47=Mod(x^172, x^257 - 1) w48=Mod(x^2, x^257 - 1) w49=Mod(x^6, x^257 - 1) w50=Mod(x^18, x^257 - 1) w51=Mod(x^54, x^257 - 1) w52=Mod(x^162, x^257 - 1) w53=Mod(x^229, x^257 - 1) w54=Mod(x^173, x^257 - 1) w55=Mod(x^5, x^257 - 1) w56=Mod(x^15, x^257 - 1) w57=Mod(x^45, x^257 - 1) w58=Mod(x^135, x^257 - 1) w59=Mod(x^148, x^257 - 1) w60=Mod(x^187, x^257 - 1) w61=Mod(x^47, x^257 - 1) w62=Mod(x^141, x^257 - 1) w63=Mod(x^166, x^257 - 1) w64=Mod(x^241, x^257 - 1) w65=Mod(x^209, x^257 - 1) w66=Mod(x^113, x^257 - 1) w67=Mod(x^82, x^257 - 1) w68=Mod(x^246, x^257 - 1) w69=Mod(x^224, x^257 - 1) w70=Mod(x^158, x^257 - 1) w71=Mod(x^217, x^257 - 1) w72=Mod(x^137, x^257 - 1) w73=Mod(x^154, x^257 - 1) w74=Mod(x^205, x^257 - 1) w75=Mod(x^101, x^257 - 1) w76=Mod(x^46, x^257 - 1) w77=Mod(x^138, x^257 - 1) w78=Mod(x^157, x^257 - 1) w79=Mod(x^214, x^257 - 1) w80=Mod(x^128, x^257 - 1) w81=Mod(x^127, x^257 - 1) w82=Mod(x^124, x^257 - 1) w83=Mod(x^115, x^257 - 1) w84=Mod(x^88, x^257 - 1) w85=Mod(x^7, x^257 - 1) w86=Mod(x^21, x^257 - 1) w87=Mod(x^63, x^257 - 1) w88=Mod(x^189, x^257 - 1) w89=Mod(x^53, x^257 - 1) w90=Mod(x^159, x^257 - 1) w91=Mod(x^220, x^257 - 1) w92=Mod(x^146, x^257 - 1) w93=Mod(x^181, x^257 - 1) w94=Mod(x^29, x^257 - 1) w95=Mod(x^87, x^257 - 1) w96=Mod(x^4, x^257 - 1) w97=Mod(x^12, x^257 - 1) w98=Mod(x^36, x^257 - 1) w99=Mod(x^108, x^257 - 1) w100=Mod(x^67, x^257 - 1) w101=Mod(x^201, x^257 - 1) w102=Mod(x^89, x^257 - 1) w103=Mod(x^10, x^257 - 1) w104=Mod(x^30, x^257 - 1) w105=Mod(x^90, x^257 - 1) w106=Mod(x^13, x^257 - 1) w107=Mod(x^39, x^257 - 1) w108=Mod(x^117, x^257 - 1) w109=Mod(x^94, x^257 - 1) w110=Mod(x^25, x^257 - 1) w111=Mod(x^75, x^257 - 1) w112=Mod(x^225, x^257 - 1) w113=Mod(x^161, x^257 - 1) w114=Mod(x^226, x^257 - 1) w115=Mod(x^164, x^257 - 1) w116=Mod(x^235, x^257 - 1) w117=Mod(x^191, x^257 - 1) w118=Mod(x^59, x^257 - 1) w119=Mod(x^177, x^257 - 1) w120=Mod(x^17, x^257 - 1) w121=Mod(x^51, x^257 - 1) w122=Mod(x^153, x^257 - 1) w123=Mod(x^202, x^257 - 1) w124=Mod(x^92, x^257 - 1) w125=Mod(x^19, x^257 - 1) w126=Mod(x^57, x^257 - 1) w127=Mod(x^171, x^257 - 1) w128=Mod(x^256, x^257 - 1) w129=Mod(x^254, x^257 - 1) w130=Mod(x^248, x^257 - 1) w131=Mod(x^230, x^257 - 1) w132=Mod(x^176, x^257 - 1) w133=Mod(x^14, x^257 - 1) w134=Mod(x^42, x^257 - 1) w135=Mod(x^126, x^257 - 1) w136=Mod(x^121, x^257 - 1) w137=Mod(x^106, x^257 - 1) w138=Mod(x^61, x^257 - 1) w139=Mod(x^183, x^257 - 1) w140=Mod(x^35, x^257 - 1) w141=Mod(x^105, x^257 - 1) w142=Mod(x^58, x^257 - 1) w143=Mod(x^174, x^257 - 1) w144=Mod(x^8, x^257 - 1) w145=Mod(x^24, x^257 - 1) w146=Mod(x^72, x^257 - 1) w147=Mod(x^216, x^257 - 1) w148=Mod(x^134, x^257 - 1) w149=Mod(x^145, x^257 - 1) w150=Mod(x^178, x^257 - 1) w151=Mod(x^20, x^257 - 1) w152=Mod(x^60, x^257 - 1) w153=Mod(x^180, x^257 - 1) w154=Mod(x^26, x^257 - 1) w155=Mod(x^78, x^257 - 1) w156=Mod(x^234, x^257 - 1) w157=Mod(x^188, x^257 - 1) w158=Mod(x^50, x^257 - 1) w159=Mod(x^150, x^257 - 1) w160=Mod(x^193, x^257 - 1) w161=Mod(x^65, x^257 - 1) w162=Mod(x^195, x^257 - 1) w163=Mod(x^71, x^257 - 1) w164=Mod(x^213, x^257 - 1) w165=Mod(x^125, x^257 - 1) w166=Mod(x^118, x^257 - 1) w167=Mod(x^97, x^257 - 1) w168=Mod(x^34, x^257 - 1) w169=Mod(x^102, x^257 - 1) w170=Mod(x^49, x^257 - 1) w171=Mod(x^147, x^257 - 1) w172=Mod(x^184, x^257 - 1) w173=Mod(x^38, x^257 - 1) w174=Mod(x^114, x^257 - 1) w175=Mod(x^85, x^257 - 1) w176=Mod(x^255, x^257 - 1) w177=Mod(x^251, x^257 - 1) w178=Mod(x^239, x^257 - 1) w179=Mod(x^203, x^257 - 1) w180=Mod(x^95, x^257 - 1) w181=Mod(x^28, x^257 - 1) w182=Mod(x^84, x^257 - 1) w183=Mod(x^252, x^257 - 1) w184=Mod(x^242, x^257 - 1) w185=Mod(x^212, x^257 - 1) w186=Mod(x^122, x^257 - 1) w187=Mod(x^109, x^257 - 1) w188=Mod(x^70, x^257 - 1) w189=Mod(x^210, x^257 - 1) w190=Mod(x^116, x^257 - 1) w191=Mod(x^91, x^257 - 1) w192=Mod(x^16, x^257 - 1) w193=Mod(x^48, x^257 - 1) w194=Mod(x^144, x^257 - 1) w195=Mod(x^175, x^257 - 1) w196=Mod(x^11, x^257 - 1) w197=Mod(x^33, x^257 - 1) w198=Mod(x^99, x^257 - 1) w199=Mod(x^40, x^257 - 1) w200=Mod(x^120, x^257 - 1) w201=Mod(x^103, x^257 - 1) w202=Mod(x^52, x^257 - 1) w203=Mod(x^156, x^257 - 1) w204=Mod(x^211, x^257 - 1) w205=Mod(x^119, x^257 - 1) w206=Mod(x^100, x^257 - 1) w207=Mod(x^43, x^257 - 1) w208=Mod(x^129, x^257 - 1) w209=Mod(x^130, x^257 - 1) w210=Mod(x^133, x^257 - 1) w211=Mod(x^142, x^257 - 1) w212=Mod(x^169, x^257 - 1) w213=Mod(x^250, x^257 - 1) w214=Mod(x^236, x^257 - 1) w215=Mod(x^194, x^257 - 1) w216=Mod(x^68, x^257 - 1) w217=Mod(x^204, x^257 - 1) w218=Mod(x^98, x^257 - 1) w219=Mod(x^37, x^257 - 1) w220=Mod(x^111, x^257 - 1) w221=Mod(x^76, x^257 - 1) w222=Mod(x^228, x^257 - 1) w223=Mod(x^170, x^257 - 1) w224=Mod(x^253, x^257 - 1) w225=Mod(x^245, x^257 - 1) w226=Mod(x^221, x^257 - 1) w227=Mod(x^149, x^257 - 1) w228=Mod(x^190, x^257 - 1) w229=Mod(x^56, x^257 - 1) w230=Mod(x^168, x^257 - 1) w231=Mod(x^247, x^257 - 1) w232=Mod(x^227, x^257 - 1) w233=Mod(x^167, x^257 - 1) w234=Mod(x^244, x^257 - 1) w235=Mod(x^218, x^257 - 1) w236=Mod(x^140, x^257 - 1) w237=Mod(x^163, x^257 - 1) w238=Mod(x^232, x^257 - 1) w239=Mod(x^182, x^257 - 1) w240=Mod(x^32, x^257 - 1) w241=Mod(x^96, x^257 - 1) w242=Mod(x^31, x^257 - 1) w243=Mod(x^93, x^257 - 1) w244=Mod(x^22, x^257 - 1) w245=Mod(x^66, x^257 - 1) w246=Mod(x^198, x^257 - 1) w247=Mod(x^80, x^257 - 1) w248=Mod(x^240, x^257 - 1) w249=Mod(x^206, x^257 - 1) w250=Mod(x^104, x^257 - 1) w251=Mod(x^55, x^257 - 1) w252=Mod(x^165, x^257 - 1) w253=Mod(x^238, x^257 - 1) w254=Mod(x^200, x^257 - 1) w255=Mod(x^86, x^257 - 1) w256=Mod(x^256, x^257 - 1) time = 83 ms. gp> for(i=0,256,print("w",i,"=",wz(i))) w0=0.9997011578430936601557841494 + 0.02444575642474446432707565555*I w1=0.9973114921607055251910813003 + 0.07327883462628893208108465709*I w2=0.9758900886082343303047345107 + 0.2182625367675647340354336426*I w3=0.7899301922098954046494142458 + 0.6131967803529611662687655979*I w4=-0.3981573349354490164680557408 + 0.9173171407082180267795257942*I w5=0.9419936487669393886858315955 - 0.3356306983616785169556805011*I w6=0.5175389758882802299308647552 - 0.8556596335205430822968512060*I w7=-0.9981327248931005101678923831 - 0.06108243198722635309340719311*I w8=-0.9832363385911683567014042051 - 0.1823356862323811127882726483*I w9=-0.8524804477269027910843996149 - 0.5227591091921204943521594866*I w10=0.07937304360999866232893362196 - 0.9968449829076160076884356315*I w11=-0.2361189047151675387979754470 + 0.9717241701409457236172065239*I w12=0.6557001798948322938274954843 - 0.7550213732642835374768196193*I w13=-0.8394464487790566286254809362 - 0.5434424161143760556214650522*I w14=0.1522072872105575292633739360 - 0.9883485932200252038675447004*I w15=-0.4425170812578835835391010840 + 0.8967600753796991255092613870*I w16=0.9809340443197178469116750920 - 0.1943409393168660767284130238*I w17=0.8327408041565011690125048539 - 0.5536630320806905429692568531*I w18=-0.1883418307188289852712420310 - 0.9821035356832190767597832962*I w19=0.5383015604079719879203395096 + 0.8427522946052075180703352020*I w20=-0.9909731878054055529189000579 + 0.1340602142725141818361517388*I w21=-0.9197335481702369500746309054 + 0.3925432464967222280759966431*I w22=-0.3528458412712996604911635502 + 0.9356814694635930456657573445*I w23=0.8828200299406745484753719235 - 0.4697113951519022854053578952*I w24=0.1037179532438341691014195738 - 0.9946067495120419848956040657*I w25=-0.3066909119549613968172769261 + 0.9518091639211266369790811350*I w26=0.8046841869003959804409930433 - 0.5937030902331977840449180210*I w27=-0.3298669547653847422691634754 - 0.9440274318862834911032790540*I w28=0.8460266577220731615747806285 + 0.5331405953626285851990372607*I w29=-0.1158680696532500787472134433 + 0.9932646124949934952133232008*I w30=0.3413819037972679357231567772 - 0.9399246755776512223357563309*I w31=-0.8650049324833105736923584152 + 0.5017633573503981128501907444*I w32=0.006112009909491508145890904195 + 0.9999813214929898267386555064*I w33=-0.01833511643124459296893295828 - 0.9998318976235218634719813537*I w34=0.05498069395305788960567183323 + 0.9984874176936032795951200661*I w35=-0.1642772824227089746594643979 - 0.9864142002626531090510472646*I w36=0.4750984264156101750941743355 + 0.8799326594787870719118165296*I w37=-0.9963412345025238982848219890 - 0.08546428745380541628078127900*I w38=-0.9672315533890932408258183695 - 0.2538958883647422748808970761*I w39=-0.7178284903783698520533271217 - 0.6962199784558832815675681990*I w40=0.6739612976250833947072578028 - 0.7387666541632166546884358055*I w41=-0.7973667634814899686384976091 - 0.6034950244161534388844298191*I w42=0.3642570541695865912351813609 - 0.9312984475922285460323799777*I w43=-0.8994479940261121456939710550 + 0.4370278092323221138753536215*I w44=-0.2122938100570935887044861003 + 0.9772058832259672130936109520*I w45=0.5986102384702112387929886403 - 0.8010404374303689499419068855*I w46=-0.9378205896090794320121435727 - 0.3471203562242909073645452721*I w47=-0.4858190435869154950157436697 - 0.8740594126764465560020252602*I w48=0.9988048099856441294900226973 + 0.04887690200433457335307469130*I w49=0.9892604247916259964554960386 + 0.1461636478098835817617627219*I w50=0.9047229300875749052427317153 + 0.4260004926919135034499363235*I w51=0.2479794171295245972666301133 + 0.9687653011334072563622654072*I w52=-0.6829414732742013402904975954 - 0.7304730960699807569961364923*I w53=0.7747040686345039393486177742 - 0.6323239723758271444320315826*I w54=-0.4643068168730201895771802008 - 0.8856744208823260885228809992*I w55=0.9925378730050517336739295297 + 0.1219367485650154483755915856*I w56=0.9335073950523333294372257723 + 0.3585581450512690207126515235*I w57=0.4534458275133212841334817290 + 0.8912838389148314868794734095*I w58=-0.9873998398961705010358955497 - 0.1582452406014691530573939942*I w59=-0.8884957256722192652276490229 - 0.4588848934778704258683740304*I w60=-0.1401145481717691354478727946 - 0.9901353005476680743143366851*I w61=0.4093406807355386879759188375 + 0.9123816126462467163556816283*I w62=-0.9536658834400057007649260325 - 0.3008677163847817363832816115*I w63=-0.6083572655900073153648214704 - 0.7936633022912482509846444243*I w64=0.9244631986108763542446084388 - 0.3812712871619726094735948086*I w65=0.3869144938144324692906379445 - 0.9221155971332018947741030934*I w66=-0.9290547096029599327944546979 + 0.3699423557320245383886309289*I w67=-0.4204628601246849695318380591 + 0.9073097504467642401110075083*I w68=0.9640557178984151697115143811 - 0.2657001557910182125548986044*I w69=0.6918195992596271444293178282 - 0.7220703858213885405095952826*I w70=-0.7509996245950976103767166846 - 0.6603026305096947441460627265*I w71=0.5587424105289070124280962018 - 0.8293412558629567791099540337*I w72=-0.9784851723498196583184694455 - 0.2063171526837837077467229561*I w73=-0.8118813690484682331372048171 - 0.5838224409801193382461685522*I w74=0.2950332812951028200167554758 - 0.9554869768491063701051122500*I w75=-0.7823755843076232325467563776 + 0.6228069083426300044800562570*I w76=0.4315222111527638710289093439 + 0.9021023119812017598518704472*I w77=-0.9731491808696591763523784259 - 0.2301753066093567095742068979*I w78=-0.7669167915195058003365159100 - 0.6417465503494560087686168454*I w79=0.4964670664409133681937361409 - 0.8680555580949607117554646554*I w80=-0.9999252866697325552128053590 + 0.01222379149254313492063082244*I w81=-0.9993276470109054090822235213 + 0.03666406850919899484661294934*I w82=-0.9939542465848803672248119816 + 0.1097950622563821621681899117*I w83=-0.9460259489596190259063794981 + 0.3240908883246369480926346332*I w84=-0.5485629704348220875872298503 + 0.8361092437401493698630280426*I w85=0.9853917111400266362314206329 + 0.1703031873352061066969964227*I w86=0.8710737557429566566458243160 + 0.4911522290042669500279814625*I w87=0.03055548319777883853018031857 + 0.9995330722124957557376309332*I w88=-0.09155233860702751949827588268 - 0.9958002657639654287333710070*I w89=0.2715875110098927293046666024 + 0.9624137487917820657084384084*I w90=-0.7346335969753897194575632411 - 0.6784640581453085852444807059*I w91=0.6180133879151941402552757014 - 0.7861675726952770782280355290*I w92=-0.9098626764228853381028873709 - 0.4149095203204957227584640010*I w93=-0.2833315647972736653012197305 - 0.9590220145489509639198925141*I w94=0.7590149165894427694516112709 + 0.6510732342791563685218126734*I w95=-0.5279597137765894048693809655 + 0.8492694158092246946834332516*I w96=0.9952220969009173499320022506 + 0.09763696963825268447649150550*I w97=0.9572723761178166288652894696 + 0.2891878246429980936546986578*I w98=0.6370471604524938994780451227 + 0.7708248279339570498572856971*I w99=-0.8770124173602024854970918411 + 0.4804677094207414122629486733*I w100=-0.06718188816412667290336054739 + 0.9977407448343997425062692932*I w101=0.2003327879177083807067883379 - 0.9797279081893699301466946078*I w102=-0.5688383596104873883704837962 + 0.8224493422914567753162812570*I w103=0.9702628586987844059827890040 + 0.2420536821237444546433326887*I w104=0.7428721132347862501439633417 + 0.6694333599232136529940740254*I w105=-0.5887737630215185646705681144 + 0.8082978757719710217057660858*I w106=0.9499168876539662773638135300 + 0.3125026504684432428974032803*I w107=0.5788493090756070245733867156 + 0.8154345328612790428114835759*I w108=-0.9607358267812419728464728315 + 0.2774647205303106984761526599*I w109=-0.6648804141899315721084839145 + 0.7469498208224064092399502954*I w110=0.8189572344748130789672778742 + 0.5738545530893399055513287811*I w111=-0.2598028748076986024824416681 + 0.9656616727620783473869799609*I w112=0.7092644111717052408565462070 - 0.7049425473364863128440391253*I w113=-0.7005943489526429969200985058 - 0.7135597790063718946555323417*I w114=0.7262853068708804223311680260 - 0.6873933757489019148870252099*I w115=-0.6464219665115392044154293511 - 0.7629801053837213174663906532*I w116=0.8588068544252573020139423541 - 0.5122995088736616312440692277*I w117=-0.04277128416049781007076451628 - 0.9990848899123947561326527097*I w118=0.1280008722839550792531332452 + 0.9917740552638723975004975012*I w119=-0.3756138373526926842806170501 - 0.9267762649038790128151503299*I w120=0.9148664650169125623996628113 + 0.4037565494050323174848613047*I w121=0.3183027148160301438944783860 + 0.9479891253283156645976596138*I w122=-0.8259107258564894649382452790 - 0.5638009160290595912951344507*I w123=0.2242231098413897370522094195 - 0.9745378376507789924956357700*I w124=-0.6275771625636589444040711794 + 0.7785543687042972301814948278*I w125=0.8940386564545772588997839910 + 0.4479898221666362596243738285*I w126=0.1763227302291462477396425600 + 0.9843324107254315721859756809*I w127=-0.5070409038791074225419031973 - 0.8619219928702699876988995444*I w128=0.9997011578430936601557841492 - 0.02444575642474446432707565594*I w129=0.9973114921607055251910813003 - 0.07327883462628893208108465741*I w130=0.9758900886082343303047345107 - 0.2182625367675647340354336429*I w131=0.7899301922098954046494142456 - 0.6131967803529611662687655981*I w132=-0.3981573349354490164680557411 - 0.9173171407082180267795257941*I w133=0.9419936487669393886858315956 + 0.3356306983616785169556805008*I w134=0.5175389758882802299308647554 + 0.8556596335205430822968512058*I w135=-0.9981327248931005101678923832 + 0.06108243198722635309340719348*I w136=-0.9832363385911683567014042051 + 0.1823356862323811127882726486*I w137=-0.8524804477269027910843996148 + 0.5227591091921204943521594869*I w138=0.07937304360999866232893362229 + 0.9968449829076160076884356315*I w139=-0.2361189047151675387979754474 - 0.9717241701409457236172065239*I w140=0.6557001798948322938274954846 + 0.7550213732642835374768196191*I w141=-0.8394464487790566286254809360 + 0.5434424161143760556214650525*I w142=0.1522072872105575292633739363 + 0.9883485932200252038675447003*I w143=-0.4425170812578835835391010843 - 0.8967600753796991255092613869*I w144=0.9809340443197178469116750921 + 0.1943409393168660767284130235*I w145=0.8327408041565011690125048541 + 0.5536630320806905429692568528*I w146=-0.1883418307188289852712420307 + 0.9821035356832190767597832962*I w147=0.5383015604079719879203395093 - 0.8427522946052075180703352021*I w148=-0.9909731878054055529189000579 - 0.1340602142725141818361517384*I w149=-0.9197335481702369500746309056 - 0.3925432464967222280759966428*I w150=-0.3528458412712996604911635506 - 0.9356814694635930456657573444*I w151=0.8828200299406745484753719236 + 0.4697113951519022854053578949*I w152=0.1037179532438341691014195741 + 0.9946067495120419848956040657*I w153=-0.3066909119549613968172769264 - 0.9518091639211266369790811349*I w154=0.8046841869003959804409930435 + 0.5937030902331977840449180207*I w155=-0.3298669547653847422691634751 + 0.9440274318862834911032790541*I w156=0.8460266577220731615747806283 - 0.5331405953626285851990372610*I w157=-0.1158680696532500787472134437 - 0.9932646124949934952133232008*I w158=0.3413819037972679357231567775 + 0.9399246755776512223357563308*I w159=-0.8650049324833105736923584154 - 0.5017633573503981128501907441*I w160=0.006112009909491508145890903851 - 0.9999813214929898267386555065*I w161=-0.01833511643124459296893295794 + 0.9998318976235218634719813536*I w162=0.05498069395305788960567183291 - 0.9984874176936032795951200662*I w163=-0.1642772824227089746594643975 + 0.9864142002626531090510472646*I w164=0.4750984264156101750941743352 - 0.8799326594787870719118165298*I w165=-0.9963412345025238982848219890 + 0.08546428745380541628078127944*I w166=-0.9672315533890932408258183694 + 0.2538958883647422748808970765*I w167=-0.7178284903783698520533271215 + 0.6962199784558832815675681993*I w168=0.6739612976250833947072578030 + 0.7387666541632166546884358053*I w169=-0.7973667634814899686384976089 + 0.6034950244161534388844298194*I w170=0.3642570541695865912351813612 + 0.9312984475922285460323799776*I w171=-0.8994479940261121456939710551 - 0.4370278092323221138753536212*I w172=-0.2122938100570935887044861006 - 0.9772058832259672130936109519*I w173=0.5986102384702112387929886406 + 0.8010404374303689499419068853*I w174=-0.9378205896090794320121435726 + 0.3471203562242909073645452724*I w175=-0.4858190435869154950157436694 + 0.8740594126764465560020252603*I w176=0.9988048099856441294900226973 - 0.04887690200433457335307469162*I w177=0.9892604247916259964554960385 - 0.1461636478098835817617627222*I w178=0.9047229300875749052427317151 - 0.4260004926919135034499363238*I w179=0.2479794171295245972666301130 - 0.9687653011334072563622654073*I w180=-0.6829414732742013402904975951 + 0.7304730960699807569961364925*I w181=0.7747040686345039393486177744 + 0.6323239723758271444320315823*I w182=-0.4643068168730201895771802005 + 0.8856744208823260885228809994*I w183=0.9925378730050517336739295297 - 0.1219367485650154483755915859*I w184=0.9335073950523333294372257722 - 0.3585581450512690207126515238*I w185=0.4534458275133212841334817287 - 0.8912838389148314868794734097*I w186=-0.9873998398961705010358955497 + 0.1582452406014691530573939947*I w187=-0.8884957256722192652276490228 + 0.4588848934778704258683740307*I w188=-0.1401145481717691354478727943 + 0.9901353005476680743143366852*I w189=0.4093406807355386879759188372 - 0.9123816126462467163556816285*I w190=-0.9536658834400057007649260324 + 0.3008677163847817363832816118*I w191=-0.6083572655900073153648214701 + 0.7936633022912482509846444245*I w192=0.9244631986108763542446084389 + 0.3812712871619726094735948082*I w193=0.3869144938144324692906379448 + 0.9221155971332018947741030933*I w194=-0.9290547096029599327944546981 - 0.3699423557320245383886309286*I w195=-0.4204628601246849695318380594 - 0.9073097504467642401110075082*I w196=0.9640557178984151697115143812 + 0.2657001557910182125548986041*I w197=0.6918195992596271444293178285 + 0.7220703858213885405095952823*I w198=-0.7509996245950976103767166843 + 0.6603026305096947441460627268*I w199=0.5587424105289070124280962020 + 0.8293412558629567791099540335*I w200=-0.9784851723498196583184694454 + 0.2063171526837837077467229564*I w201=-0.8118813690484682331372048169 + 0.5838224409801193382461685524*I w202=0.2950332812951028200167554761 + 0.9554869768491063701051122499*I w203=-0.7823755843076232325467563779 - 0.6228069083426300044800562567*I w204=0.4315222111527638710289093436 - 0.9021023119812017598518704473*I w205=-0.9731491808696591763523784259 + 0.2301753066093567095742068983*I w206=-0.7669167915195058003365159097 + 0.6417465503494560087686168457*I w207=0.4964670664409133681937361412 + 0.8680555580949607117554646552*I w208=-0.9999252866697325552128053590 - 0.01222379149254313492063082207*I w209=-0.9993276470109054090822235212 - 0.03666406850919899484661294898*I w210=-0.9939542465848803672248119815 - 0.1097950622563821621681899112*I w211=-0.9460259489596190259063794982 - 0.3240908883246369480926346329*I w212=-0.5485629704348220875872298506 - 0.8361092437401493698630280424*I w213=0.9853917111400266362314206329 - 0.1703031873352061066969964230*I w214=0.8710737557429566566458243158 - 0.4911522290042669500279814628*I w215=0.03055548319777883853018031825 - 0.9995330722124957557376309332*I w216=-0.09155233860702751949827588232 + 0.9958002657639654287333710070*I w217=0.2715875110098927293046666021 - 0.9624137487917820657084384085*I w218=-0.7346335969753897194575632409 + 0.6784640581453085852444807062*I w219=0.6180133879151941402552757017 + 0.7861675726952770782280355288*I w220=-0.9098626764228853381028873707 + 0.4149095203204957227584640014*I w221=-0.2833315647972736653012197301 + 0.9590220145489509639198925142*I w222=0.7590149165894427694516112707 - 0.6510732342791563685218126737*I w223=-0.5279597137765894048693809658 - 0.8492694158092246946834332515*I w224=0.9952220969009173499320022505 - 0.09763696963825268447649150581*I w225=0.9572723761178166288652894695 - 0.2891878246429980936546986582*I w226=0.6370471604524938994780451224 - 0.7708248279339570498572856973*I w227=-0.8770124173602024854970918413 - 0.4804677094207414122629486730*I w228=-0.06718188816412667290336054779 - 0.9977407448343997425062692932*I w229=0.2003327879177083807067883382 + 0.9797279081893699301466946077*I w230=-0.5688383596104873883704837965 - 0.8224493422914567753162812568*I w231=0.9702628586987844059827890040 - 0.2420536821237444546433326890*I w232=0.7428721132347862501439633415 - 0.6694333599232136529940740256*I w233=-0.5887737630215185646705681147 - 0.8082978757719710217057660856*I w234=0.9499168876539662773638135299 - 0.3125026504684432428974032806*I w235=0.5788493090756070245733867153 - 0.8154345328612790428114835761*I w236=-0.9607358267812419728464728316 - 0.2774647205303106984761526595*I w237=-0.6648804141899315721084839148 - 0.7469498208224064092399502951*I w238=0.8189572344748130789672778740 - 0.5738545530893399055513287814*I w239=-0.2598028748076986024824416684 - 0.9656616727620783473869799608*I w240=0.7092644111717052408565462072 + 0.7049425473364863128440391250*I w241=-0.7005943489526429969200985056 + 0.7135597790063718946555323419*I w242=0.7262853068708804223311680262 + 0.6873933757489019148870252097*I w243=-0.6464219665115392044154293508 + 0.7629801053837213174663906534*I w244=0.8588068544252573020139423543 + 0.5122995088736616312440692274*I w245=-0.04277128416049781007076451589 + 0.9990848899123947561326527096*I w246=0.1280008722839550792531332449 - 0.9917740552638723975004975012*I w247=-0.3756138373526926842806170497 + 0.9267762649038790128151503301*I w248=0.9148664650169125623996628111 - 0.4037565494050323174848613050*I w249=0.3183027148160301438944783857 - 0.9479891253283156645976596140*I w250=-0.8259107258564894649382452788 + 0.5638009160290595912951344510*I w251=0.2242231098413897370522094198 + 0.9745378376507789924956357699*I w252=-0.6275771625636589444040711797 - 0.7785543687042972301814948275*I w253=0.8940386564545772588997839908 - 0.4479898221666362596243738288*I w254=0.1763227302291462477396425597 - 0.9843324107254315721859756809*I w255=-0.5070409038791074225419031970 + 0.8619219928702699876988995446*I w256=0.9997011578430936601557841492 - 0.02444575642474446432707565594*I time = 34 ms. gp> w(0)+w(256)-v(0) time = 3 ms. %34 = 0 gp> w(0)*w(256) time = 2 ms. %35 = Mod(1, x^257 - 1) gp> wz(0)+wz(256) time = 1 ms. %36 = 1.999402315686187320311568298 - 3.88513995 E-28*I gp> wz(0)*wz(256) time = 1 ms. %37 = 0.9999999999999999999999999998 - 3.91275008 E-28*I gp> quit Good bye! bash-2.05a$