bash-2.05a$ gp Reading GPRC: /home/his/.gprc ...Done. GP/PARI CALCULATOR Version 2.1.4 (released) i386 running netbsd 32-bit version (readline v4.2a enabled, extended help available) Copyright (C) 2002 The PARI Group PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER. Type ? for help, \q to quit. Type ?12 for how to get moral (and possibly technical) support. realprecision = 28 significant digits seriesprecision = 16 significant terms format = g0.28 parisize = 50000000, primelimit = 500000 gp> read("x17.gp") time = 80 ms. gp> check(3) [16] time = 36 ms. gp> check(5) [16] time = 9 ms. gp> check(7) [16] time = 4 ms. gp> check(11) [16] time = 1 ms. gp> check(13) [4] [8] [12] [16] time = 10 ms. gp> check(19) [8] [16] time = 1 ms. gp> a time = 3 ms. %1 = Mod(x, x^17 - 1) gp> z time = 0 ms. %2 = 0.9324722294043558045731158918 + 0.3612416661871529487447145961*I gp> for(i=0,1,print("p",i,"=",p(i))) p0=Mod(x^16 + x^15 + x^13 + x^9 + x^8 + x^4 + x^2 + x, x^17 - 1) p1=Mod(x^14 + x^12 + x^11 + x^10 + x^7 + x^6 + x^5 + x^3, x^17 - 1) time = 59 ms. gp> p(0)+p(1) time = 21 ms. %3 = Mod(x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x, x^17 - 1) gp> p(0)*p(1) time = 12 ms. %4 = Mod(4*x^16 + 4*x^15 + 4*x^14 + 4*x^13 + 4*x^12 + 4*x^11 + 4*x^10 + 4*x^9 + 4*x^8 + 4*x^7 + 4*x^6 + 4*x^5 + 4*x^4 + 4*x^3 + 4*x^2 + 4*x, x^17 - 1) gp> pz(0)+pz(1) time = 39 ms. %5 = -1.000000000000000000000000001 + 6.05845175 E-28*I gp> pz(0)*pz(1) time = 1 ms. %6 = -3.999999999999999999999999998 + 1.21169034 E-27*I gp> for(i=0,1,print("p",i,"=",pz(i))) p0=1.561552812808830274910704927 - 8.83524213 E-29*I p1=-2.561552812808830274910704928 + 6.94197596 E-28*I time = 8 ms. gp> d(p(0),p(1)) time = 12 ms. %7 = Mod(3*x^16 + 3*x^15 + 3*x^13 + 3*x^9 + 3*x^8 + 3*x^4 + 3*x^2 + 3*x + 8, x^17 - 1) gp> d(pz(0),pz(1)) time = 3 ms. %8 = 12.68465843842649082473211478 - 3.05272432 E-27*I gp> for(i=0,3,print("q",i,"=",q(i))) q0=Mod(x^16 + x^13 + x^4 + x, x^17 - 1) q1=Mod(x^14 + x^12 + x^5 + x^3, x^17 - 1) q2=Mod(x^15 + x^9 + x^8 + x^2, x^17 - 1) q3=Mod(x^11 + x^10 + x^7 + x^6, x^17 - 1) time = 6 ms. gp> for(i=0,3,print("q",i,"=",qz(i))) q0=2.049481177735315599625533997 - 1.89326617 E-28*I q1=0.3441507314089108077147592273 + 1.38839519 E-28*I q2=-0.4879283649264853247148290702 + 8.83524213 E-29*I q3=-2.905703544217741082625464155 + 5.67979851 E-28*I time = 20 ms. gp> q(0)+q(2) time = 1 ms. %9 = Mod(x^16 + x^15 + x^13 + x^9 + x^8 + x^4 + x^2 + x, x^17 - 1) gp> q(0)*q(2) time = 4 ms. %10 = Mod(x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x, x^17 - 1) gp> q(0)+q(2)-p(0) time = 7 ms. %11 = 0 gp> qz(0)+qz(2) time = 1 ms. %12 = 1.561552812808830274910704927 - 1.00974195 E-28*I gp> qz(0)*qz(2) time = 1 ms. %13 = -1.000000000000000000000000000 + 2.52435489 E-28*I gp> q(1)*q(3) time = 3 ms. %14 = Mod(x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x, x^17 - 1) gp> q(1)+q(3) time = 2 ms. %15 = Mod(x^14 + x^12 + x^11 + x^10 + x^7 + x^6 + x^5 + x^3, x^17 - 1) gp> q(1)+q(3)-p(1) time = 1 ms. %16 = 0 gp> qz(1)+qz(3) time = 9 ms. %17 = -2.561552812808830274910704928 + 7.06819370 E-28*I gp> qz(1)*qz(3) time = 1 ms. %18 = -0.9999999999999999999999999984 - 2.14570166 E-28*I gp> for(i=0,7,print("r",i,"=",r(i))) r0=Mod(x^16 + x, x^17 - 1) r1=Mod(x^14 + x^3, x^17 - 1) r2=Mod(x^9 + x^8, x^17 - 1) r3=Mod(x^10 + x^7, x^17 - 1) r4=Mod(x^13 + x^4, x^17 - 1) r5=Mod(x^12 + x^5, x^17 - 1) r6=Mod(x^15 + x^2, x^17 - 1) r7=Mod(x^11 + x^6, x^17 - 1) time = 11 ms. gp> for(i=0,7,print("r",i,"=",rz(i))) r0=1.864944458808711609146231783 - 2.65057264 E-28*I r1=0.8914767115530765347929150984 - 8.83524213 E-29*I r2=-1.965946199367803556563897689 + 3.12388918 E-28*I r3=-1.700434271459228304268287845 + 3.28166136 E-28*I r4=0.1845367189266039904793022140 + 7.57306468 E-29*I r5=-0.5473259801441657270781558710 + 2.14570166 E-28*I r6=1.478017834441318231849068619 - 2.14570166 E-28*I r7=-1.205269272758512778357176309 + 2.39813715 E-28*I time = 21 ms. gp> r(0)+r(4) time = 0 ms. %19 = Mod(x^16 + x^13 + x^4 + x, x^17 - 1) gp> r(0)*r(4) time = 2 ms. %20 = Mod(x^14 + x^12 + x^5 + x^3, x^17 - 1) gp> r(0)+r(4)-q(0) time = 2 ms. %21 = 0 gp> r(0)*r(4)-q(1) time = 1 ms. %22 = 0 gp> rz(0)+rz(4) time = 0 ms. %23 = 2.049481177735315599625533997 - 1.89326617 E-28*I gp> rz(0)*rz(4) time = 0 ms. %24 = 0.3441507314089108077147592273 + 9.46633085 E-29*I gp> d(rz(0),rz(4)) time = 0 ms. %25 = 2.739870958734902269931859762 - 1.29155673 E-27*I gp> for(i=0,15,print("s",i,"=",s(i))) s0=Mod(x, x^17 - 1) s1=Mod(x^3, x^17 - 1) s2=Mod(x^9, x^17 - 1) s3=Mod(x^10, x^17 - 1) s4=Mod(x^13, x^17 - 1) s5=Mod(x^5, x^17 - 1) s6=Mod(x^15, x^17 - 1) s7=Mod(x^11, x^17 - 1) s8=Mod(x^16, x^17 - 1) s9=Mod(x^14, x^17 - 1) s10=Mod(x^8, x^17 - 1) s11=Mod(x^7, x^17 - 1) s12=Mod(x^4, x^17 - 1) s13=Mod(x^12, x^17 - 1) s14=Mod(x^2, x^17 - 1) s15=Mod(x^6, x^17 - 1) time = 8 ms. gp> for(i=0,15,print("s",i,"=",sz(i))) s0=0.9324722294043558045731158918 + 0.3612416661871529487447145961*I s1=0.4457383557765382673964575494 + 0.8951632913550623220670164996*I s2=-0.9829730996839017782819488448 - 0.1837495178165703315744088394*I s3=-0.8502171357296141521341439229 - 0.5264321628773558002446077989*I s4=0.09226835946330199523965110680 - 0.9957341762950345218711911788*I s5=-0.2736629900720828635390779353 + 0.9618256431728190704087962907*I s6=0.7390089172206591159245343094 - 0.6736956436465572117126919126*I s7=-0.6026346363792563891785881551 - 0.7980172272802395033328051126*I s8=0.9324722294043558045731158916 - 0.3612416661871529487447145964*I s9=0.4457383557765382673964575489 - 0.8951632913550623220670164997*I s10=-0.9829730996839017782819488447 + 0.1837495178165703315744088397*I s11=-0.8502171357296141521341439227 + 0.5264321628773558002446077992*I s12=0.09226835946330199523965110722 + 0.9957341762950345218711911788*I s13=-0.2736629900720828635390779357 - 0.9618256431728190704087962905*I s14=0.7390089172206591159245343099 + 0.6736956436465572117126919123*I s15=-0.6026346363792563891785881548 + 0.7980172272802395033328051128*I time = 17 ms. gp> s(0)+s(8) time = 0 ms. %26 = Mod(x^16 + x, x^17 - 1) gp> s(0)+s(8)-r(0) time = 1 ms. %27 = 0 gp> s(0)*s(8) time = 2 ms. %28 = Mod(1, x^17 - 1) gp> sz(0)+sz(8) time = 0 ms. %29 = 1.864944458808711609146231783 - 2.65057264 E-28*I gp> sz(0)*sz(8) time = 0 ms. %30 = 0.9999999999999999999999999998 - 3.28166136 E-28*I gp> quit Good bye! bash-2.05a$