bash-2.05a$ cat xx7.data 93461639715357977769163558199606896584051237541638188580280321 bash-2.05a$ xrunecpp -fxx7.data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % ECPP % % % % by Fran\c{c}ois MORAIN % % morain@inria.inria.fr % % Version V3.4.1 % % % % "3 is prime, 5 is prime, 7 is prime % % so every odd number is prime" % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on 93461639715357977769163558199606896584051237541638188580280321 % Performing a quick compositeness test % This number might be prime % Entering ECPP % Starting phase 1: building the sequence of primes % Pmax=9000 % N_0=93461639715357977769163558199606896584051237541638188580280321 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[0]]=3 % A[[0]]=-19060219781176639773294183822511 % B[[0]]=-1875684830906180189757965852561 % m[[0]]=93461639715357977769163558199625956803832414181411482764102833 % Factor= 241^1 % Factor= 3^1 % End of depth 0 at 0.067734 s % Pmax=9000 % N_1=129269211224561518352923317011930783961040683515091954030571 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[1]]=1 % Factor= 2^2 % End of depth 1 at 0.085951 s % Pmax=9000 % N_2=32317302806140379588230829252982695990260170878772988507643 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 8 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[2]]=8 % A[[2]]=-114337680879613798271343161082 % B[[2]]=-120517688512741313071461175691 % m[[2]]=32317302806140379588230829253097033671139784677044331668726 % Factor= 17^1 % Factor= 11^2 % Factor= 3^6 % Factor= 2^1 % End of depth 2 at 0.119909 s % Pmax=9000 % N_3=10775645411045951556307389353059556304825432871343771 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 8 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[3]]=8 % A[[3]]=-150187331715074258131228122 % B[[3]]=-50678332446532384056785605 % m[[3]]=10775645411045951556307389503246888019899691002571894 % Factor= 3593^1 % Factor= 3^4 % Factor= 2^1 % End of depth 3 at 0.136077 s % Pmax=7000 % N_4=18512755273535907536786875548901478560678155059 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 7 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 8 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 11 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[4]]=11 % A[[4]]=-79248415431037483875819 % B[[4]]=-78491869727098215473915 % m[[4]]=18512755273535907536786954797316909598162030879 % Factor= 179^1 % Factor= 31^1 % Factor= 3^1 % End of depth 4 at 0.173376 s % Pmax=7000 % N_5=1112077567942326397356097482868799759606057 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 4 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 8 % Cofactor after sieve is a probable prime % D[[5]]=8 % A[[5]]=369399275282461084314 % B[[5]]=734153802618199523552 % m[[5]]=1112077567942326397355728083593517298521744 % Factor= 3^1 % Factor= 2^4 % End of depth 5 at 0.207121 s % Pmax=7000 % N_6=23168282665465133278244335074864943719203 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 8 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 11 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 43 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 163 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 187 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[6]]=187 % A[[6]]=-297287579707499898373 % B[[6]]=-4791495146688025997 % m[[6]]=23168282665465133278541622654572443617577 % Factor= 7^1 % End of depth 6 at 0.260609 s % Pmax=7000 % N_7=3309754666495019039791660379224634802511 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[7]]=3 % A[[7]]=97791369872926575188 % B[[7]]=-35004126634615261930 % m[[7]]=3309754666495019039693869009351708227324 % Factor= 613^1 % Factor= 3^1 % Factor= 2^2 % End of depth 7 at 0.277444 s % Pmax=7000 % N_8=449939459828034127201450381912956529 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % m is prime, we forget about it % itmax=0 ngcd=0 b1=0 b2=0 % next D is 4 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[8]]=4 % A[[8]]=1243645910082282510 % B[[8]]=251546561121270248 % m[[8]]=449939459828034125957804471830674020 % Factor= 569^1 % Factor= 233^1 % Factor= 5^1 % Factor= 2^2 % End of depth 8 at 0.318347 s % Pmax=7000 % N_9=169689863184426456307581432613 % next D is 0 % Cofactor after sieve is a probable prime % D[[9]]=-1 % Factor= 151^1 % Factor= 23^1 % Factor= 13^1 % Factor= 3^1 % Factor= 2^2 % End of depth 9 at 0.327417 s % Pmax=5000 % N_10=313203436001584487488799 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 43 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 67 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 115 % Cofactor after sieve is a probable prime % D[[10]]=115 % A[[10]]=1036639727341 % B[[10]]=39363613711 % m[[10]]=313203436000547847761459 % Factor= 23^1 % End of depth 10 at 0.341628 s % Pmax=5000 % N_11=13617540695675993380933 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[11]]=3 % A[[11]]=-184081469537 % B[[11]]=82833518489 % m[[11]]=13617540695860074850471 % Factor= 3229^1 % Factor= 271^1 % Factor= 7^1 % End of depth 11 at 0.357578 s % Pmax=5000 % N_12=2223122048400667 % next D is 0 % Cofactor after sieve is a probable prime % D[[12]]=-1 % Factor= 1319^1 % Factor= 157^1 % Factor= 107^1 % Factor= 7^1 % Factor= 3^1 % Factor= 2^1 % End of depth 12 at 0.364422 s % Pmax=5000 % N_13=2388833 % next D is 0 % Factorization completed using sieve only % D[[13]]=-1 % Factor= 3929^1 % Factor= 19^1 % Factor= 2^5 % Cofactor is 1 % End of depth 13 at 0.369506 s % Pmax=5000 % N_14=3929 % next D is 0 % Factorization completed using sieve only % D[[14]]=-1 % Factor= 491^1 % Factor= 2^3 % Cofactor is 1 % End of depth 14 at 0.374954 s % Pmax=5000 % N_15=491 % next D is 0 % Factorization completed using sieve only % D[[15]]=-1 % Factor= 7^2 % Factor= 5^1 % Factor= 2^1 % Cofactor is 1 % Time for building is 0.366841 s % Starting phase 2: proving % Starting proving job for step 0 % Entering the D=3 business % E found % Suggested twist(3)=1 % N_0 is prime % Time for proof[0] is 0.131138 s % Starting proving job for step 1 % N_1 is prime % Time for proof[1] is 0.025030 s % Starting proving job for step 2 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000078s % j has been computed % E found % Suggested twist(8)=1 % N_2 is prime % Time for proof[2] is 0.090208 s % Starting proving job for step 3 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000078s % j has been computed % E found % Suggested twist(8)=-1 % N_3 is prime % Time for proof[3] is 0.064421 s % Starting proving job for step 4 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000080s % j has been computed % E found % Suggested twist(11)=-1 % N_4 is prime % Time for proof[4] is 0.051442 s % Starting proving job for step 5 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000079s % j has been computed % E found % Suggested twist(8)=1 % N_5 is prime % Time for proof[5] is 0.042012 s % Starting proving job for step 6 % File /home/his/ECPP/Ecpp/Data/Weber/h2g2.cwdx does not exist % tpber=0.000080s % j has been computed % E found % N_6 is prime % Time for proof[6] is 0.081797 s % Starting proving job for step 7 % Entering the D=3 business % E found % Suggested twist(3)=1 % N_7 is prime % Time for proof[7] is 0.041864 s % Starting proving job for step 8 % Entering the D=4 business % E found % Suggested twist(4)=1 % N_8 is prime % Time for proof[8] is 0.031450 s % Starting proving job for step 9 % N_9 is prime % Time for proof[9] is 0.001056 s % Starting proving job for step 10 % File /home/his/ECPP/Ecpp/Data/Weber/h2g2.cwdx does not exist % tpber=0.000077s % j has been computed % E found % N_10 is prime % Time for proof[10] is 0.025611 s % Starting proving job for step 11 % Entering the D=3 business % E found % Suggested twist(3)=1 % N_11 is prime % Time for proof[11] is 0.018242 s % Starting proving job for step 12 % Using complete factorization theorem % b=1 % Nonresidue is 3 % b=1 % Nonresidue is 5 % N_12 is prime % Time for proof[12] is 0.002856 s % Starting proving job for step 13 % N_13 is prime % Time for proof[13] is 0.000347 s % Starting proving job for step 14 % N_14 is prime % Time for proof[14] is 0.000338 s % Starting proving job for step 15 % Using complete factorization theorem % N_15 is prime % Time for proof[15] is 0.000592 s % Time for building is 0.366841 s % Time for proving is 0.613719 s % Total time is 0.980684 s This number is prime % Time for this number is 0.994595s % ==> Total time for the computations is 0.994876s