bash-2.05a$ cat p252.data 130439874405488189727484768796509903946608530841611892186895295776832416251471863574140227977573104895898783928842923844831149032913798729088601617946094119449010595906710130531906171018354491609619193912488538116080712299672322806217820753127014424577 bash-2.05a$ xrunecpp -fp252.data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % ECPP % % % % by Fran\c{c}ois MORAIN % % morain@inria.inria.fr % % Version V3.4.1 % % % % "3 is prime, 5 is prime, 7 is prime % % so every odd number is prime" % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Working on 130439874405488189727484768796509903946608530841611892186895295776832416251471863574140227977573104895898783928842923844831149032913798729088601617946094119449010595906710130531906171018354491609619193912488538116080712299672322806217820753127014424577 % Performing a quick compositeness test % This number might be prime % Entering ECPP % Starting phase 1: building the sequence of primes % Pmax=1000000 % N_0=130439874405488189727484768796509903946608530841611892186895295776832416251471863574140227977573104895898783928842923844831149032913798729088601617946094119449010595906710130531906171018354491609619193912488538116080712299672322806217820753127014424577 % next D is 0 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.640866 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Factor=760347109 % Performing last gcd in step 2 % Time for step 2 is 1.860623 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.673414 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.980938 % next D is 3 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.669968 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.964485 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.672720 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.977062 % Cofactor after sieve is a probable prime % D[[0]]=3 % A[[0]]=611635827269645140989796643725974774056700114295615864752091223122067400185078693543786541948460821549409366027766370356014445 % B[[0]]=-221856644722164055527839008766296846071421376937164916213107702433275182082467715979886040697452833916248171980971780084459069 % m[[0]]=130439874405488189727484768796509903946608530841611892186895295776832416251471863574140227977573104895898783928842923844831148421277971459443460628149450393474236539206595834916041418927131369542219008833794994329538763838850773396851792986756658410133 % Factor= 109^1 % Factor= 3^1 % End of depth 0 at 18.796112 s % Pmax=1000000 % N_1=398898698487731467056528344943455363751096424592085297207630873935267327986152487994312623784627232097549797947531877201318496701155876022762876538683334536618460364546164632770768865220585227957856296127813438316632305317586462987314351641457670979 % next D is 0 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.714912 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 2.078064 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.686029 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.994252 % next D is 3 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.679625 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=22615687 % P-1: entering step 2 % Factor=82422499 % Performing last gcd in step 2 % Time for step 2 is 1.956234 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.636939 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.878477 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.682622 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.998394 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.687543 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 2.015110 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.692669 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 2.030291 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.700519 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 2.046312 % next D is 8 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.701407 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 2.039353 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.680714 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.977909 % next D is 11 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.683737 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Factor=7458949 % Performing last gcd in step 2 % Time for step 2 is 2.046161 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.637251 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.865445 % next D is 163 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.656674 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.909966 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.675352 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.990084 % next D is 15 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.647763 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.888560 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Factor=11879869 % Time for rho is 0.687863 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.764523 % next D is 40 % Cofactor after sieve is a probable prime % D[[1]]=40 % A[[1]]=12857135509514858961925702335833309183700018000084478459647260579538445953444098849249614218592975843786068574945282016459526 % B[[1]]=5979734234146401335076849405643337661185064413798597340730230116548416533292041783215600313302447813852133701916390523270059 % m[[1]]=398898698487731467056528344943455363751096424592085297207630873935267327986152487994312623784627232097549797947531877201318483844020366507903914612980998703309276664528164548292309217960005689511902852028964188702413712341742676918739406359441211454 % Factor= 1453^1 % Factor= 7^1 % Factor= 2^1 % End of depth 1 at 90.532879 s % Pmax=1000000 % N_2=19609610583410257942017910969592732462446977907387931236241808766850227508905343033837018178381045723013951329639754065545102932062745379407330381131697901057382590921648045830906952018484204577322920658193107300285798463363616012129554928691437 % next D is 0 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.664000 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.919963 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.590611 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=5542027 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.660831 % next D is 3 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.634350 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.871377 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.661907 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.955834 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.643100 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.874227 % Cofactor after sieve is a probable prime % D[[2]]=3 % A[[2]]=-212420826028912838922289425010479349349110602435270595285809270989870904121189835548094528133624840735840513333081520756126 % B[[2]]=105381584417195299502116357921166445980244748426029423890549048711254451337901944502174323195641070499199641029545568128068 % m[[2]]=19609610583410257942017910969592732462446977907387931236241808766850227508905343033837018178381045723013951329639754065545315352888774292246252670556708380406731701524083316426192761289474075481444110493741201828419423304099456525462636449447564 % Factor= 241177^1 % Factor= 2707^1 % Factor= 691^1 % Factor= 3^1 % Factor= 2^2 % End of depth 2 at 112.337877 s % Pmax=1000000 % N_3=3622309304873149556834978952160973004986541895079664516886469588741637815245247297730715321800494792265095757108268300371181284824488860204479002537140706518312699919389668622907634115742039137156331369995549348242702856030180236353 % next D is 0 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.620577 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.809672 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.597040 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.747239 % next D is 3 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.597553 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.756365 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.594501 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.754788 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.593313 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.739715 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.601158 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Factor=939876181 % Time for step 2 is 0.430950 % Factorization completed using p-1 % D[[3]]=3 % A[[3]]=-96609718907976165233073227409649260509798925513266001446923963750659867404508714166768456583897009112460220305066882 % B[[3]]=41455998488415122863097658817148250005409120777268657941270099643699821878631075534880924650672737804964630214606864 % m[[3]]=3622309304873149556834978952160973004986541895079664516886469588741637815245247297730715321800494792265095757108268396980900192800654093277706412186401216317238213185391115546871384775609443645870498138452133245251815316250485303236 % Factor= 939876181^1 % Factor= 3^1 % Factor= 2^2 % End of depth 3 at 135.136761 s % Pmax=1000000 % N_4=321169016559457984323839616500946752987468063721440391597574133787384295822583402055126248752165401123999736470630237638797036464871508899116220588848076531657366364072793714344892058323287058407262170566356517165159733263 % next D is 0 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.574162 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Factor=133880407 % Performing last gcd in step 2 % Time for step 2 is 1.577430 % Cofactor after sieve is a probable prime % D[[4]]=1 % Factor= 4969^1 % Factor= 2^4 % End of depth 4 at 139.590292 s % Pmax=1000000 % N_5=4039658590252792115161999603805428066354750248055951796105530964321094483580491573444433597707856222630304594367959318258163569944550071683389773959147672213440410093489556680731687189616711843520604882350026629668441 % next D is 0 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.557801 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.629389 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.551625 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.620169 % next D is 4 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.542914 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.568355 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.560916 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.631600 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.541690 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.597355 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.505186 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.482317 % next D is 7 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.509005 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Factor=35116019 % Factor=4764341 % Performing last gcd in step 2 % Time for step 2 is 1.566972 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.468645 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.373846 % next D is 8 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.520426 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.524025 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.528952 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=195013459 % Factor=4740257 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.366749 % next D is 11 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.548098 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.607555 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.536134 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.568576 % next D is 19 % Cofactor after sieve is a probable prime % D[[5]]=19 % A[[5]]=2854194747032947841357512735127036198583895292664656603811040110789557055561255147602805447917689408619001958 % B[[5]]=649380543166481460595071456149318531860802023862782238807283709156398086538331612611746241206491925741180600 % m[[5]]=4039658590252792115161999603805428066354750248055951796105530964321094483580491573444433597707856222630304591513764571225215728587037336556353575375252379548783806282449445891174631628361564240715156964660618010666484 % Factor= 2^2 % End of depth 5 at 182.293071 s % Pmax=1000000 % N_6=1009914647563198028790499900951357016588687562013987949026382741080273620895122893361108399426964055657576147878441142806303932146759334139088393843813094887195951570612361472793657907090391060178789241165154502666621 % next D is 0 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.538907 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.580652 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.543966 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.586049 % next D is 4 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.535390 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.558883 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.508963 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.499918 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.540337 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.592102 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.498092 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=1631427573509 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.379147 % next D is 11 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.553310 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.618345 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.524482 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Factor=7686589 % Performing last gcd in step 2 % Time for step 2 is 1.441023 % next D is 19 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.514426 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.510253 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.533026 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.560969 % next D is 67 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.510837 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.508629 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.442187 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.300606 % next D is 163 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.541819 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.596663 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.543537 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=1825969 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.515317 % next D is 20 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.513009 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.510882 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.541975 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.594276 % next D is 115 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.522587 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.558976 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.522169 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=726448711 % Factor=44839807 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.372867 % next D is 187 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.529999 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=5789677 % Factor=540670993 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.402743 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.550894 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.612283 % next D is 235 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.542997 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.499099 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.531987 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.545112 % next D is 340 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.537760 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=65454859 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.513223 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Factor=1033007 % Time for rho is 0.590853 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Factor=4042697 % Performing last gcd in step 2 % Time for step 2 is 1.479707 % next D is 1012 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.536955 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.581178 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.505970 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.492442 % next D is 292 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.510501 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=1793419 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.476832 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.540048 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.598365 % next D is 1387 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.516527 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.514105 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.523257 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.534454 % next D is 1507 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.516479 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.525081 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.526618 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=78885196211 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.438216 % next D is 1555 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.542376 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.594646 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Factor=1246579 % Time for rho is 0.595551 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.518441 % next D is 3355 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.511792 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.499480 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.545890 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.587709 % next D is 244 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.534014 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.549783 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.505048 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=4912543 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.469998 % next D is 2515 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.506357 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.504069 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.543945 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.591591 % next D is 1955 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.517313 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.521830 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.505427 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.491668 % next D is 2740 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.540723 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=231735353 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.501848 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Factor=2922107 % Time for rho is 0.545648 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=34123861 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.326782 % next D is 5140 % Cofactor after sieve is a probable prime % D[[6]]=5140 % A[[6]]=380239118748071105552975149951980571181158599564810669732270365690563566568741981757812910850336068824568032 % B[[6]]=27528113690397599036081856254053117660476103710092259202673784936755973166615188992161379488343369723500933 % m[[6]]=1009914647563198028790499900951357016588687562013987949026382741080273620895122893361108399426964055657576147498202024058232826593784184187107822662654495322385281838341995782230091338348409302365878390829085678098590 % Factor= 1621^1 % Factor= 19^1 % Factor= 5^1 % Factor= 2^1 % End of depth 6 at 336.954625 s % Pmax=1000000 % N_7=3279050123585824308550601970685272302960120659807097467535902922433434919624412784055029057524478248182006388188584123050205612499705133891060822308044077153106535401610428202961431664496929453442898765638772941 % next D is 0 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.444946 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.297348 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.503726 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.473107 % next D is 4 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.484805 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.418987 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.508828 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=7889641 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.476695 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.506541 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.490946 % Cofactor after sieve is a probable prime % D[[7]]=4 % A[[7]]=-3621093551420845444298601465200249380129408471510663086859004423773688890377882926920658152794908887363700 % B[[7]]=-31152793621384039490590493395243615002245330340124874673503921528134522071163403616161227746187523675021 % m[[7]]=3279050123585824308550601970685272302960120659807097467535902922433434919624412784055029057524478248182010009282135543895649911101170334140440951716515587816193394406034201891851809547423850111595693674526136642 % Factor= 7^2 % Factor= 293^1 % Factor= 17^1 % Factor= 2^1 % End of depth 7 at 353.793130 s % Pmax=1000000 % N_8=6717465396231853100046712140184276378729213172928756760456884984232808999963970811645536830823411101332020881968081861882602688381503456277611969804677340867118303442948924058056962472546390798494879879309 % next D is 0 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.467411 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=65887897 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.264542 % Cofactor after sieve is a probable prime % D[[8]]=1 % Factor= 23671^1 % Factor= 281^1 % Factor= 5^1 % Factor= 2^1 % End of depth 8 at 357.468274 s % Pmax=1000000 % N_9=100990962802989153958929460815744724481992443159930018734831695408075635291136921473586188105953199506882242682467320206709723617566842023425994475644512698874567802952257662281428233393179888397381 % next D is 0 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.435760 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.290326 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.461636 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.348817 % next D is 3 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.404633 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.444013 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.304202 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.459740 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.356502 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.471725 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=19013377 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.311995 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.437286 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.288077 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.444853 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.307208 % next D is 4 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.445180 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.308813 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Factor=21006673 % Time for rho is 0.472540 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.180723 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.466240 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.365984 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.402762 % next D is 7 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.437893 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.278089 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.420718 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=117766837063 % Factor=49648537 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.047954 % next D is 11 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.447438 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.309986 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.470405 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.381179 % next D is 19 % Cofactor after sieve is a probable prime % D[[9]]=19 % A[[9]]=512767122500889487838857297750740777812402305394166726132363546723538069074280421578609567271847493 % B[[9]]=86155834727457483516305323838264936177610904853907574747129833407374070075236619274218554673969355 % m[[9]]=100990962802989153958929460815744724481992443159930018734831695408075635291136921473586188105953198994115120181577832367852425866826064211023689081477786566511021079414188588001006654783612616549889 % Factor= 157^1 % Factor= 47^1 % Factor= 19^1 % End of depth 9 at 400.520881 s % Pmax=1000000 % N_10=720329832190848524325286273391378980763278743803040054884285386039155464591100787252488841776828974073759246949578336587131517370247460510436366940876217477129414764617859986740512940589672089 % next D is 0 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.395516 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.438284 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.288239 % next D is 4 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.368035 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.398931 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.391716 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.421350 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.235033 % next D is 8 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.434237 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.275028 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.438104 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % Factor=67653589121 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.171286 % next D is 19 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.437028 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.283557 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.430952 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Factor=1439131997 % Performing last gcd in step 2 % Time for step 2 is 1.249736 % next D is 43 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.421121 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.235373 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.404029 % next D is 20 % itmax=1000 ngcd=10 b1=5000 b2=50000 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.428832 % Entering P-1 with b1=5000 b2=50000 nbgcd=10 % P-1: entering step 2 % Performing last gcd in step 2 % Time for step 2 is 1.269557 % Cofactor after sieve is a probable prime % D[[10]]=20 % A[[10]]=-813053863757533948077320280758173175931385737525994556255670454270992464533433120298667916272326 % B[[10]]=-333186340010536710632348673998726374336285554208805600830563745220056650006074393501557097809852 % m[[10]]=720329832190848524325286273391378980763278743803040054884285386039155464591100787252488841776829787127623004483526413907412275543423391896173892935432473147583685757082393419860811608505944416 % Factor= 60821^1 % Factor= 59581^1 % Factor= 3^1 % Factor= 2^5 % End of depth 10 at 426.847055 s % Pmax=1000000 % N_11=2070612463330347405135246938375408444462924438528230258488128362814480731335533010100852193515214909088620466868844269439768609907885694096597680793227078005769759305534293184240921 % next D is 0 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.369449 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.376208 % next D is 4 % Cofactor after sieve is a probable prime % D[[11]]=4 % A[[11]]=1184858230405386068906730449789914295145946166982548902189497902492535940605372034427479880 % B[[11]]=1311350527811119489640661237089653348139135103344189401340655806626788767792766865332987389 % m[[11]]=2070612463330347405135246938375408444462924438528230258488128362814480731335533010100852192330356678683234397962113819649854314761939527114048778603729175513233818700162258756761042 % Factor= 2^1 % End of depth 11 at 428.842160 s % Pmax=1000000 % N_12=1035306231665173702567623469187704222231462219264115129244064181407240365667766505050426096165178339341617198981056909824927157380969763557024389301864587756616909350081129378380521 % next D is 0 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.355002 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.356811 % next D is 4 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.399750 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.412724 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.378709 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.404293 % next D is 8 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.400670 % Cofactor after sieve is a probable prime % D[[12]]=8 % A[[12]]=-1332861815997478061333885194741293825030151644100647012207700356909796938327524191553515614 % B[[12]]=-543680088162675834649049269249363425518525118446086252103572751014177154168243755280981306 % m[[12]]=1035306231665173702567623469187704222231462219264115129244064181407240365667766505050426097498040155339095260314942104566220982411121407657671401509564944666413847677605320931896136 % Factor= 73^1 % Factor= 59^1 % Factor= 41^1 % Factor= 3^1 % Factor= 2^3 % End of depth 12 at 433.645436 s % Pmax=1000000 % N_13=244286157263646649755178153258663864986159376413164410282198996671904964141321866145871935056100806622961878166508601182000228029979888963530583015162720704811662164071468297 % next D is 0 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.361669 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.364420 % next D is 3 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.361849 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.376343 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.336417 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.338868 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.370510 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.360724 % next D is 4 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.364467 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.328678 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.339273 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.353469 % next D is 7 % Cofactor after sieve is a probable prime % D[[13]]=7 % A[[13]]=828300828351707189761485367882887705854985215697257164634321543786102405443043980268790 % B[[13]]=203912574686331937043649425396660883916922086731997286312849078465198097370093679218328 % m[[13]]=244286157263646649755178153258663864986159376413164410282198996671904964141321866145871106755272454915772116681140718294294373044764191706365948693618934602406219120091199508 % Factor= 13^2 % Factor= 359^1 % Factor= 2^2 % End of depth 13 at 441.042830 s % Pmax=1000000 % N_14=1006601824857207931941035063121853377174265202539781816198014688532845033629418775633626884159122376900710869612915224301125632694220433594163392286343288401403549966587 % next D is 0 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.334470 % Cofactor after sieve is a probable prime % D[[14]]=1 % Factor= 4397^1 % Factor= 389^1 % Factor= 2^2 % End of depth 14 at 442.206750 s % Pmax=1000000 % N_15=147126754578695560121477290125052161817251129178953781907565904150125294827306707663151214364889238119925023314697977690608990924260177626683329935510962487481759 % next D is 0 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.319221 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.297667 % next D is 7 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.325807 % Cofactor after sieve is a probable prime % D[[15]]=7 % A[[15]]=-207255782103157501897107415088012756629748047138332906263403983344272531111526808 % B[[15]]=-279170214103866526736379993442299169659269078049511270065037643728536453616345814 % m[[15]]=147126754578695560121477290125052161817251129178953781907565904150125294827306707870406996468046740017032438402710734320357038062593083890087313279783493599008568 % Factor= 5639^1 % Factor= 23^1 % Factor= 11^1 % Factor= 7^1 % Factor= 2^3 % End of depth 15 at 444.357663 s % Pmax=1000000 % N_16=1841539388392360357110530174338562760731970905150578510056329895259937207632829172950547831164309391062130406078227063502818583235725093748567631506855459 % next D is 0 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.304320 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.300583 % next D is 7 % itmax=1000 ngcd=10 b1=0 b2=0 % Entering Rho with itmax=1000 nbgcd=10 % Time for rho is 0.300422 % Cofactor after sieve is a probable prime % D[[16]]=7 % A[[16]]=-83223285389472263286474083419630068433208982693224744109687725235807778094444 % B[[16]]=-7928630962277463001962757016729682583022170928159627689435977741818640274810 % m[[16]]=1841539388392360357110530174338562760731970905150578510056329895259937207632912396235937303427595865145550036146660272485511807979834781473803439284949904 % Factor= 38567^1 % Factor= 29^1 % Factor= 2^4 % End of depth 16 at 446.429667 s % Pmax=1000000 % N_17=102907534648187276704676175626437978999151661346989660517809685834455645461643574831033929725721151253659665498524526534069673643395035636248530283 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000245 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000277 % next D is 7 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000272 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000245 % next D is 8 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000257 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000257 % next D is 19 % Cofactor after sieve is a probable prime % D[[17]]=19 % A[[17]]=15551791415498503830776588037097989211641828791124373140624670077967606856 % B[[17]]=2989207977846271796099576718422265301004163863177475321356929558448867722 % m[[17]]=102907534648187276704676175626437978999151661346989660517809685834455645446091783415535425894944563216561676286882697742945300502770365558280923428 % Factor= 2797^1 % Factor= 17^1 % Factor= 2^2 % End of depth 17 at 448.263037 s % Pmax=30000 % N_18=541060456834987469266841445805579397038589987943961284768395159911121398168688002983950376952956756275429957974314379602858632688228803751293 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000265 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000255 % next D is 4 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000316 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is -0.009625 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000265 % Cofactor after sieve is a probable prime % D[[18]]=4 % A[[18]]=-46512553281562678155650903942748303565422407972009706071553848137085866 % B[[18]]=-453931319073386011643722016144943762488274474653899916532725470917202 % m[[18]]=541060456834987469266841445805579397038589987943961284768395159911121444681241284546628532603860699023733523396722351612564704242076940837160 % Factor= 397^1 % Factor= 241^1 % Factor= 17^1 % Factor= 5^1 % Factor= 2^3 % End of depth 18 at 448.487789 s % Pmax=30000 % N_19=8316284398595204042320722569097056902829772044666849134686545846212985060046413584963694215707701264237294773602887405058390458369381 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000270 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000246 % next D is 4 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000267 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is -0.009655 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000261 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000246 % next D is 7 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000251 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000257 % next D is 11 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000269 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000289 % next D is 19 % Cofactor after sieve is a probable prime % D[[19]]=19 % A[[19]]=4944173527445238709774750683330020322166651435714665797470073455210 % B[[19]]=681341004540253827776189056137863043836486054499374186892110486636 % m[[19]]=8316284398595204042320722569097056902829772044666849134686545846208040886518968346253919465024371243915128122167172739260920384914172 % Factor= 61^1 % Factor= 11^1 % Factor= 2^2 % End of depth 19 at 448.898552 s % Pmax=30000 % N_20=3098466616466171401758838513076399740249542490561419200702885933758584532980241559707123496655876022323073070852150797042071678433 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000262 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000241 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000261 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000236 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.003586 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000269 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000201 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000210 % next D is 4 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000220 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000204 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000211 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000216 % next D is 8 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000209 % Cofactor after sieve is a probable prime % D[[20]]=8 % A[[20]]=-109142503502658525262245087610847974003593013828769253066836556350 % B[[20]]=-7760318896772679917397754681523930829292911396647258826226862148 % m[[20]]=3098466616466171401758838513076399740249542490561419200702885933867727036482900084969368584266723996326666084680920050108908234784 % Factor= 691^1 % Factor= 73^1 % Factor= 2^5 % End of depth 20 at 449.353944 s % Pmax=22000 % N_21=1919534559097751051780498850854181787022940801103113415577288928758528832347216217419518431860419183736263012633640972303459 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000213 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000208 % next D is 8 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000209 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000204 % next D is 11 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000223 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000198 % next D is 43 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000216 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000215 % next D is 67 % Cofactor after sieve is a probable prime % D[[21]]=67 % A[[21]]=87611957264918790404989653131574777419272099004384286037758368 % B[[21]]=184600439879482298832823724631448502204138216429612819790494 % m[[21]]=1919534559097751051780498850854181787022940801103113415577288841146571567428425812429865300285641764464164008249354934545092 % Factor= 241^1 % Factor= 89^1 % Factor= 2^2 % End of depth 21 at 449.669320 s % Pmax=22000 % N_22=22373240700006422814356133745794463460102345110530950342408606941425842316989437880901968626575152273581099448101950377 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000217 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000213 % next D is 4 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000207 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000203 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000282 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000196 % next D is 8 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000633 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000207 % next D is 19 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000209 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000207 % next D is 43 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000204 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000198 % next D is 67 % Cofactor after sieve is a probable prime % D[[22]]=67 % A[[22]]=265238952070701641821978904467197525403124315482494964789469 % B[[22]]=16902380431338582320551474030941255376542470473853176551229 % m[[22]]=22373240700006422814356133745794463460102345110530950342408341702473771615347615901997501429049749149265616953137160909 % Factor= 19^1 % End of depth 22 at 450.052474 s % Pmax=22000 % N_23=1177538984210864358650322828726024392636965532133207912758333773814409032386716626420921127844723639435032471217745311 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000207 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000200 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000217 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000200 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000204 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000198 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000190 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000209 % next D is 11 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000208 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000186 % next D is 19 % Cofactor after sieve is a probable prime % D[[23]]=19 % A[[23]]=42768484405603981941271493880768303715075235655460272146687 % B[[23]]=12313904589380734608874965676481046343599355208705931066315 % m[[23]]=1177538984210864358650322828726024392636965532133207912758291005330003428404775354927040359541008564199377010945598625 % Factor= 3^2 % Factor= 17047^1 % Factor= 23^2 % Factor= 7^1 % Factor= 5^3 % End of depth 23 at 450.346561 s % Pmax=22000 % N_24=16581396268693846813946065185848433994320933513999906070144753635601207287819957991378348176400600962417181 % next D is 0 % Cofactor after sieve is a probable prime % D[[24]]=-1 % Factor= 29^1 % Factor= 13^1 % Factor= 5^1 % Factor= 3^1 % Factor= 2^2 % End of depth 24 at 450.388444 s % Pmax=15000 % N_25=733041391188941061624494482132998850323648696463302655620899807055756290354551635339449521503121174289 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000212 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000221 % next D is 4 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000217 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000191 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000229 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 7 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000214 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000194 % next D is 8 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000195 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000219 % next D is 67 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000197 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000218 % next D is 20 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000193 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 35 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000196 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 40 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000201 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000203 % next D is 115 % Cofactor after sieve is a probable prime % D[[25]]=115 % A[[25]]=1711854117238045080802977859589613692046469833254659 % B[[25]]=3868542081206634431392598508409545130216528632965 % m[[25]]=733041391188941061624494482132998850323648696463300943766782569010675487376692045725757475033287919631 % Factor= 17^1 % End of depth 25 at 450.762413 s % Pmax=15000 % N_26=43120081834643591860264381301941108842567570380194173162751915824157381610393649748573969119605171743 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000209 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000189 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000209 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000206 % Cofactor after sieve is a probable prime % D[[26]]=3 % A[[26]]=254877342028454773843298766942487967982044523282532 % B[[26]]=-189312675979083564017087732950901954951158217417146 % m[[26]]=43120081834643591860264381301941108842567570380193918285409887369383538311626707260605987075081889212 % Factor= 13^2 % Factor= 2^2 % End of depth 26 at 450.875736 s % Pmax=15000 % N_27=63787103305685786775539025594587439116224216538748399830487999067135411703589803639949685022310487 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000195 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000200 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000199 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000235 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 19 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000213 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000204 % next D is 43 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000199 % Cofactor after sieve is a probable prime % D[[27]]=43 % A[[27]]=-12318956547953498763087560181602579639733718841759 % B[[27]]=-1550631700175821024325567618658484026771688423287 % m[[27]]=63787103305685786775539025594587439116224216538760718787035952565898499263771406219589418741152247 % Factor= 13^1 % End of depth 27 at 451.093281 s % Pmax=15000 % N_28=4906700254283522059656848122660572239709555118366209137464304043530653789520877401506878364704019 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000209 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000208 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 8 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000193 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000194 % next D is 11 % itmax=0 ngcd=0 b1=0 b2=0 % Entering Rho with itmax=0 nbgcd=0 % Time for rho is 0.000220 % Cofactor after sieve is a probable prime % D[[28]]=11 % A[[28]]=-3163977407124703417901644727535553360694235108976 % B[[28]]=-934979240622171003872712660318233575936698996150 % m[[28]]=4906700254283522059656848122660572239709555118369373114871428746948555434248412954867572599812996 % Factor= 53^1 % Factor= 47^1 % Factor= 3^2 % Factor= 2^2 % End of depth 28 at 451.289813 s % Pmax=15000 % N_29=54715868842092890624658193080206211692198081073747414189654185589773801621932434038846208571 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 8 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 11 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 19 % Cofactor after sieve is a probable prime % D[[29]]=19 % A[[29]]=12797040063976141668446936713388611622572305928 % B[[29]]=1702926907127550118917152089987646462913192570 % m[[29]]=54715868842092890624658193080206211692198081060950374125678043921326864908543822416273902644 % Factor= 2^2 % End of depth 29 at 451.506425 s % Pmax=15000 % N_30=13678967210523222656164548270051552923049520265237593531419510980331716227135955604068475661 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 4 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[30]]=4 % A[[30]]=-5946062822605299319456875629018569192836178260 % B[[30]]=-2200011690407802775153534217152796227179103181 % m[[30]]=13678967210523222656164548270051552923049520271183656354024810299788591856154524796904653922 % Factor= 277^1 % Factor= 2^1 % End of depth 30 at 451.672751 s % Pmax=15000 % N_31=24691276553291015624845755000093055817778917457010210025315542057380129704250044759755693 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 4 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[31]]=4 % A[[31]]=-129007623909264315992379414880750506292523204 % B[[31]]=-143284803090252628248234189204833080963017267 % m[[31]]=24691276553291015624845755000093055817778917586017833934579858049759544585000551052278898 % Factor= 89^1 % Factor= 73^1 % Factor= 2^1 % End of depth 31 at 451.807428 s % Pmax=14000 % N_32=1900205983784132339914249268900496830674074002310130362827447902859746389487498157017 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 4 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 7 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 8 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 43 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 67 % Cofactor after sieve is a probable prime % D[[32]]=67 % A[[32]]=1608159298360201332007019933443343712786481 % B[[32]]=273579031835795592655931130747129178909089 % m[[32]]=1900205983784132339914249268900496830674072394150832002626115895839812946143785370537 % Factor= 29^1 % End of depth 32 at 452.041154 s % Pmax=14000 % N_33=65524344268418356548767216168982649333588703246580413883659168822062515384268461053 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 4 % Cofactor after sieve is a probable prime % D[[33]]=4 % A[[33]]=98191507438641960494977101789354275632036 % B[[33]]=251224901701941435317205302430371988352277 % m[[33]]=65524344268418356548767216168982649333588605055072975241698673844960726029992829018 % Factor= 13^1 % Factor= 2^1 % End of depth 33 at 452.094306 s % Pmax=14000 % N_34=2520167087246859867260277544960871128214946348272037509296102840190797154999724193 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 4 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[34]]=4 % A[[34]]=-92848365753106630487579843173629446457336 % B[[34]]=-19103987319174859098255694496298372208937 % m[[34]]=2520167087246859867260277544960871128215039196637790615926590420033970784446181530 % Factor= 113^1 % Factor= 17^1 % Factor= 5^1 % Factor= 2^1 % End of depth 34 at 452.228298 s % Pmax=14000 % N_35=131190374140908894703814552054183817189746964947308204889463322229774637399593 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 4 % Cofactor after sieve is a probable prime % D[[35]]=4 % A[[35]]=170987862813049044908010597883369891184 % B[[35]]=351967557927666643907474692442263555373 % m[[35]]=131190374140908894703814552054183817189575977084495155844555311631891267508410 % Factor= 661^1 % Factor= 5^1 % Factor= 2^1 % End of depth 35 at 452.274815 s % Pmax=14000 % N_36=19847257812542949274404622095943088833521327849394123425802619006337559381 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 4 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 7 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 67 % Cofactor after sieve is a probable prime % D[[36]]=67 % A[[36]]=8553524682825846056575230024410260371 % B[[36]]=304842674140329253724072731311088043 % m[[36]]=19847257812542949274404622095943088824967803166568277369227388981927299011 % Factor= 13267^1 % Factor= 3701^1 % Factor= 523^1 % Factor= 17^1 % End of depth 36 at 452.423555 s % Pmax=9000 % N_37=45462999604598074953280786401359639308535175356899766084665463 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 43 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 67 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 403 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 667 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 2392 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 23 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 31 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 547 % Cofactor after sieve is a probable prime % D[[37]]=547 % A[[37]]=13389999627963779269763573823820 % B[[37]]=68409835794976942155886511954 % m[[37]]=45462999604598074953280786401346249308907211577630002510841644 % Factor= 1619^1 % Factor= 2^2 % End of depth 37 at 452.595818 s % Pmax=9000 % N_38=7020228475076910894577020753759457892048673807540148627369 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[38]]=3 % A[[38]]=-76114965493406197784161054763 % B[[38]]=86192470530097595419489723637 % m[[38]]=7020228475076910894577020753835572857542080005324309682133 % Factor= 541^1 % End of depth 38 at 452.620305 s % Pmax=9000 % N_39=12976392745058985017702441319474256668284805924813881113 % next D is 0 % Cofactor after sieve is a probable prime % D[[39]]=-1 % Factor= 1217^1 % Factor= 769^1 % Factor= 3^2 % Factor= 2^3 % End of depth 39 at 452.633285 s % Pmax=7000 % N_40=192577066562138372670081560797515864692419774027 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % Cofactor after sieve is a probable prime % D[[40]]=3 % A[[40]]=117090429195791549858800 % B[[40]]=-502194549830806379858506 % m[[40]]=192577066562138372670081443707086668900869915228 % Factor= 163^1 % Factor= 37^1 % Factor= 2^2 % End of depth 40 at 452.649172 s % Pmax=7000 % N_41=7982799973559043801611732867977394665099897 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[41]]=1 % Factor= 13^1 % Factor= 2^1 % End of depth 41 at 452.661234 s % Pmax=7000 % N_42=307030768213809376985066648768361333273073 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[42]]=3 % A[[42]]=1054125678454614959170 % B[[42]]=197435328549067951592 % m[[42]]=307030768213809376984012523089906718313904 % Factor= 43^1 % Factor= 7^1 % Factor= 2^4 % End of depth 42 at 452.687696 s % Pmax=7000 % N_43=63752235924794305852162068747904218919 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 3 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 11 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 43 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 67 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 163 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 15 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 24 % Cofactor after sieve is a probable prime % D[[43]]=24 % A[[43]]=15018238961787383726 % B[[43]]=1107953108699187195 % m[[43]]=63752235924794305837143829786116835194 % Factor= 227^1 % Factor= 29^1 % Factor= 3^2 % Factor= 2^1 % End of depth 43 at 452.761075 s % Pmax=7000 % N_44=538020793667141845470182707868051 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 8 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 43 % Cofactor after sieve is a probable prime % m is prime, we forget about it % Cofactor after sieve is a probable prime % D[[44]]=43 % A[[44]]=-35410466915959031 % B[[44]]=-4570334086466201 % m[[44]]=538020793667141880880649623827083 % Factor= 1429^1 % Factor= 109^1 % Factor= 23^1 % Factor= 17^1 % End of depth 44 at 452.786191 s % Pmax=5000 % N_45=8834125744045465039397933 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % next D is 4 % itmax=0 ngcd=0 b1=0 b2=0 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[45]]=4 % A[[45]]=4353196808924 % B[[45]]=2023992373933 % m[[45]]=8834125744041111842589010 % Factor= 53^1 % Factor= 5^1 % Factor= 2^1 % End of depth 45 at 452.803187 s % Pmax=5000 % N_46=16668161781209644986017 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[46]]=1 % Factor= 17^1 % Factor= 3^5 % Factor= 2^1 % End of depth 46 at 452.810587 s % Pmax=5000 % N_47=2017448775261394939 % next D is 0 % itmax=0 ngcd=0 b1=0 b2=0 % Cofactor after sieve is a probable prime % D[[47]]=1 % Factor= 3041^1 % Factor= 23^1 % Factor= 5^1 % Factor= 2^2 % End of depth 47 at 452.817621 s % Pmax=5000 % N_48=1442209209829 % next D is 0 % Cofactor after sieve is a probable prime % D[[48]]=-1 % Factor= 313^1 % Factor= 3^1 % Factor= 2^2 % End of depth 48 at 452.824157 s % Pmax=5000 % N_49=383974763 % next D is 0 % Cofactor after sieve is a probable prime % D[[49]]=-1 % Factor= 19^2 % Factor= 2^1 % End of depth 49 at 452.830684 s % Pmax=5000 % N_50=531821 % next D is 0 % Cofactor after sieve is a probable prime % D[[50]]=-1 % Factor= 5^1 % Factor= 2^2 % End of depth 50 at 452.836355 s % Pmax=5000 % N_51=26591 % next D is 0 % Factorization completed using sieve only % D[[51]]=-1 % Factor= 2659^1 % Factor= 5^1 % Factor= 2^1 % Cofactor is 1 % End of depth 51 at 452.832232 s % Pmax=5000 % N_52=2659 % next D is 0 % Factorization completed using sieve only % D[[52]]=-1 % Factor= 443^1 % Factor= 3^1 % Factor= 2^1 % Cofactor is 1 % End of depth 52 at 452.839282 s % Pmax=5000 % N_53=443 % next D is 0 % Factorization completed using sieve only % D[[53]]=-1 % Factor= 17^1 % Factor= 13^1 % Factor= 2^1 % Cofactor is 1 % Time for building is 452.596699 s % Starting phase 2: proving % Starting proving job for step 0 % Entering the D=3 business % E found % Suggested twist(3)=1 % N_0 is prime % Time for proof[0] is 3.816969 s % Starting proving job for step 1 % File /home/his/ECPP/Ecpp/Data/Weber/h2g2.cwdx does not exist % tpber=0.000100s % j has been computed % E found % N_1 is prime % Time for proof[1] is 6.099623 s % Starting proving job for step 2 % Entering the D=3 business % E found % Suggested twist(3)=1 % N_2 is prime % Time for proof[2] is 3.133436 s % Starting proving job for step 3 % Entering the D=3 business % E found % Suggested twist(3)=1 % N_3 is prime % Time for proof[3] is 2.696530 s % Starting proving job for step 4 % N_4 is prime % Time for proof[4] is 0.983051 s % Starting proving job for step 5 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000108s % j has been computed % E found % Suggested twist(19)=-1 % N_5 is prime % Time for proof[5] is 2.114745 s % Starting proving job for step 6 % File /home/his/ECPP/Ecpp/Data/Weber/h12g4.cwdx does not exist % tpber=4.214207s % j has been computed % E found % N_6 is prime % Time for proof[6] is 8.508763 s % Starting proving job for step 7 % Entering the D=4 business % E found % Suggested twist(4)=1 % N_7 is prime % Time for proof[7] is 1.990335 s % Starting proving job for step 8 % N_8 is prime % Time for proof[8] is 1.642462 s % Starting proving job for step 9 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000095s % j has been computed % E found % Suggested twist(19)=1 % N_9 is prime % Time for proof[9] is 1.677479 s % Starting proving job for step 10 % File /home/his/ECPP/Ecpp/Data/Weber/h2g2.cwdx does not exist % tpber=0.000089s % j has been computed % E found % N_10 is prime % Time for proof[10] is 3.096935 s % Starting proving job for step 11 % Entering the D=4 business % E found % Suggested twist(4)=1 % N_11 is prime % Time for proof[11] is 1.415609 s % Starting proving job for step 12 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000096s % j has been computed % E found % Suggested twist(8)=-1 % N_12 is prime % Time for proof[12] is 1.277735 s % Starting proving job for step 13 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000095s % j has been computed % E found % Suggested twist(7)=-1 % N_13 is prime % Time for proof[13] is 1.190250 s % Starting proving job for step 14 % N_14 is prime % Time for proof[14] is 0.606158 s % Starting proving job for step 15 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000107s % j has been computed % E found % Suggested twist(7)=-1 % N_15 is prime % Time for proof[15] is 0.983952 s % Starting proving job for step 16 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000096s % j has been computed % E found % Suggested twist(7)=-1 % N_16 is prime % Time for proof[16] is 0.849026 s % Starting proving job for step 17 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000093s % j has been computed % E found % Suggested twist(19)=-1 % N_17 is prime % Time for proof[17] is 0.777153 s % Starting proving job for step 18 % Entering the D=4 business % E found % Suggested twist(4)=1 % N_18 is prime % Time for proof[18] is 0.691702 s % Starting proving job for step 19 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000095s % j has been computed % E found % Suggested twist(19)=-1 % N_19 is prime % Time for proof[19] is 0.613133 s % Starting proving job for step 20 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000097s % j has been computed % E found % Suggested twist(8)=1 % N_20 is prime % Time for proof[20] is 0.568530 s % Starting proving job for step 21 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000099s % j has been computed % E found % Suggested twist(67)=1 % N_21 is prime % Time for proof[21] is 0.501733 s % Starting proving job for step 22 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000095s % j has been computed % E found % Suggested twist(67)=-1 % N_22 is prime % Time for proof[22] is 0.466572 s % Starting proving job for step 23 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000093s % j has been computed % E found % Suggested twist(19)=-1 % N_23 is prime % Time for proof[23] is 0.454718 s % Starting proving job for step 24 % N_24 is prime % Time for proof[24] is 0.014032 s % Starting proving job for step 25 % File /home/his/ECPP/Ecpp/Data/Weber/h2g2.cwdx does not exist % tpber=0.000094s % j has been computed % E found % N_25 is prime % Time for proof[25] is 0.345259 s % Starting proving job for step 26 % Entering the D=3 business % E found % Suggested twist(3)=1 % N_26 is prime % Time for proof[26] is 0.364348 s % Starting proving job for step 27 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000089s % j has been computed % E found % Suggested twist(43)=1 % N_27 is prime % Time for proof[27] is 0.291008 s % Starting proving job for step 28 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000090s % j has been computed % E found % Suggested twist(11)=-1 % N_28 is prime % Time for proof[28] is 0.287660 s % Starting proving job for step 29 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000096s % j has been computed % E found % Suggested twist(19)=1 % N_29 is prime % Time for proof[29] is 0.250418 s % Starting proving job for step 30 % Entering the D=4 business % E found % Suggested twist(4)=1 % N_30 is prime % Time for proof[30] is 0.257776 s % Starting proving job for step 31 % Entering the D=4 business % E found % Suggested twist(4)=1 % N_31 is prime % Time for proof[31] is 0.240886 s % Starting proving job for step 32 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000092s % j has been computed % E found % Suggested twist(67)=1 % N_32 is prime % Time for proof[32] is 0.204792 s % Starting proving job for step 33 % Entering the D=4 business % E found % Suggested twist(4)=1 % N_33 is prime % Time for proof[33] is 0.218072 s % Starting proving job for step 34 % Entering the D=4 business % E found % Suggested twist(4)=1 % N_34 is prime % Time for proof[34] is 0.212154 s % Starting proving job for step 35 % Entering the D=4 business % E found % Suggested twist(4)=1 % N_35 is prime % Time for proof[35] is 0.177029 s % Starting proving job for step 36 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000096s % j has been computed % E found % Suggested twist(67)=-1 % N_36 is prime % Time for proof[36] is 0.145565 s % Starting proving job for step 37 % tpber=0.042665s % j has been computed % E found % N_37 is prime % Time for proof[37] is 0.245146 s % Starting proving job for step 38 % Entering the D=3 business % E found % Suggested twist(3)=1 % N_38 is prime % Time for proof[38] is 0.112824 s % Starting proving job for step 39 % N_39 is prime % Time for proof[39] is 0.003233 s % Starting proving job for step 40 % Entering the D=3 business % E found % Suggested twist(3)=1 % N_40 is prime % Time for proof[40] is 0.059162 s % Starting proving job for step 41 % N_41 is prime % Time for proof[41] is 0.040048 s % Starting proving job for step 42 % Entering the D=3 business % E found % Suggested twist(3)=1 % N_42 is prime % Time for proof[42] is 0.049627 s % Starting proving job for step 43 % File /home/his/ECPP/Ecpp/Data/Weber/h2g2.cwdx does not exist % tpber=0.000092s % j has been computed % E found % N_43 is prime % Time for proof[43] is 0.069724 s % Starting proving job for step 44 % File /home/his/ECPP/Ecpp/Data/Weber/h1g1.cwdx does not exist % tpber=0.000090s % j has been computed % E found % Suggested twist(43)=-1 % N_44 is prime % Time for proof[44] is 0.028655 s % Starting proving job for step 45 % Entering the D=4 business % E found % Suggested twist(4)=1 % N_45 is prime % Time for proof[45] is 0.014925 s % Starting proving job for step 46 % N_46 is prime % Time for proof[46] is 0.009950 s % Starting proving job for step 47 % N_47 is prime % Time for proof[47] is 0.007109 s % Starting proving job for step 48 % N_48 is prime % Time for proof[48] is 0.000524 s % Starting proving job for step 49 % N_49 is prime % Time for proof[49] is 0.000406 s % Starting proving job for step 50 % N_50 is prime % Time for proof[50] is 0.000970 s % Starting proving job for step 51 % N_51 is prime % Time for proof[51] is 0.000405 s % Starting proving job for step 52 % N_52 is prime % Time for proof[52] is 0.000347 s % Starting proving job for step 53 % Using complete factorization theorem % N_53 is prime % Time for proof[53] is 0.000580 s % Time for building is 452.596699 s % Time for proving is 49.826831 s % Total time is 502.423684 s This number is prime % Time for this number is 502.659300s % ==> Total time for the computations is 502.661174s bash-2.05a$